Удлинение пружины формула через жесткость и массу

Audi A3 маленький самолётик › Бортжурнал › Расчёт жёсткости пружин подвески

Здравствуйте! Поговорим или попишем о пружинах подвески.Пост для того, чтобы не забыть и для того, чтобы ознакомить Вас, читатели Предыдущая моя запись была про подвеску. На этот раз разберём самый интересный, на мой взгляд, компонент пружину подвески. Пока речь пойдёт про передние пружины, позже я добавлю и задние, когда доберусь до них, сниму мерки и метки. Давненько не даёт мне покоя эта тема, поэтому сведу всё в одну запись.Предыстория простая — иметь возможность подобрать то, что нужно под конкретный запрос.

Итак, для расчёта жёсткости пружины необходима следующая формула:

Как рассчитать на какую же величину произойдёт сжатие пружины под весом автомобиля?На этот вопрос нам ответит закон Гука: F = -k*x, где k — коэффициент жёсткости, а х — величина линейной деформации пружины. Соответственно линейную деформацию можно выразить: x = -Fk.Вот вроде бы и вся теоретическая часть.Например, хочу я подобрать себе пружины по жёстче да повыше и, тут возникает затык, поскольку на VAG масса пружин по каталогу, но характеристик их нет нигде. Вот люди и мучаются, пока придут к своему идеалу.Попался мне каталог пружин Kilen. Судя по отзывам можно поставить твёрдую 4-ку этому производителю. Некоторую подборку я здесь представлю. Пружины отфильтрованы по размеру основания +- 2 мм, типу CI, диаметру прутка, а так же отсортированы по диаметру прутка:

В каталоге есть легенда по параметрам пружин:

Теперь поговорим о клиренсе в стационарном режиме. Клиренс определяется как раз изменением длины пружины под действием силы тяжести.

Если мы хотим сохранить клиренс, но ужесточить подвеску, нам необходимо изменить параметр х в сторону уменьшения за счет увеличения коэфициента жесткости, при этом на столько же, насколько изменили значение х, необходимо выбрать пружину короче. Если мы увеличим только жесткость, но при этом длина пружина останется прежней, авто станет жестче, но при этом приподнимется.

Если мы хотим приподнять машину, но сохранить жесткость, то необходимо использовать более длинные пружины, но с тем же коэффициентом жесткости

На чем хотелось бы сакцентировать внимание: если происходит изменение клиренса одной из осей, а клиренс второй оси остается прежний, то автоматически происходит изменение распределения веса по осям. Если мы приподняли заднюю часть, то баланс веса смещается вперед, соответственно, сила, действующая на задние пружины становится меньше, а значит и параметр х тоже уменьшается

Этот прием часто применяется для снижения вероятности пробуксовки передней оси на переднеприводных автомобилях. Наиболее популярный метод сохранения жесткости с увеличением клиренса — это установка проставок под те же пружины или на опорную чашку. При таком подходе сама пружина сжимается под весом авто почти так же, как и до доработки, с небольшой поправкой на перераспределение веса по осям, но за счет проставок дорожный просвет увеличивается на толщину проставки.

Параметр х очень важен для стойки, так как у штока аммортизатора имеется некоторый участок примерно в треть длины, который в стационарном состоянии должен находиться внутри аммортизатора. Это необходимо для того, чтобы аммортизатор работал не только на отбой, но и на разгрузку. Если Вы поставите пружины настолько жесткие, что после опускания автомобиля с домкрата пружина не сожмется на необходимый ход штока, то в процессе эксплуатации аммортизаторы очень быстро выйдут из строя. Кроме того, неправильно подобранное значение х повлияет и на управляемость автомобиля — неправильно настроенная ось будет подпрыгивать на каждой кочке и в поворотах.

Ну, и в заключение поговорим о понятии «преднатяг». Если пружина ставится соосно с аммортизатором, то преднатяг определяется разницей между длиной пружины и длиной вытянутого штока. Т.е. это та часть значения х, которая сохраняется даже при подъеме авто на подъемнике. На само значение х преднатяг не влияет. Если говорят, что преднатяг нулевой, то это значит, что при разборе и сборе стойки Вам не понадобятся стяжки пружин.

Выделенный курсивом материал взят у человека Box77 . За что ему спасибо

Практические занятия

Механики и физики обозначают с помощью k, c и D коэффициент упругости, пропорциональности, жесткости. Смысл математической записи одинаковый. Численно показатель равняется силе, которая создаёт колебания на одну единицу длины. На практических работах по физике используется в качестве последней величины 1 метр.

Чем выше k, тем больше сопротивление предмета относительно деформации. Дополнительно коэффициент показывает степень устойчивости тела к колебаниям со стороны внешней нагрузки. Параметр зависит от длины и диаметра винтового изделия, количества витков, сырья. Единица измерения жесткости пружины — Н/м.

На практике перед школьниками и механиками может стоять более сложная задача, к примеру, найти общую жёсткость. В таком случае пружины соединены последовательным либо параллельным способом. В первом случае уменьшается суммарная жесткость. Если пружины расположены последовательно, используется следующая формула: 1/k = 1/k1 + 1/k2 + … + 1/ki, где:

  • k — суммарная жёсткость соединений;
  • k1 …ki — жёсткость каждого элемента системы;
  • i — число пружин в цепи.

Если невесомые (расположены горизонтально) предметы соединены параллельно, значение общего k будет увеличиваться. Величина вычисляется по следующей формуле: k = k1 + k2 + … + ki.

Основная методика для вычислений

На практике коэффициент Гука определяется самостоятельно. Для эксперимента потребуется пружина, линейка, груз с определённой массой. Необходимо соблюдать следующую последовательность действий:

  1. Пружина фиксируется вертикально. Для этого используется любая удобная опора со свободной нижней частью.
  2. Линейкой измеряется длина предмета. Результат записывается как х1.
  3. На свободный конец подвешивается груз с известной массой m.
  4. Измеряется длина изделия под воздействием амплитуды. Вывод записывается как х2.
  5. Производит подсчёт абсолютного удлинения: x = x2-x1. Для определения энергии (силы) и k в международной системе СИ осуществляется перевод длины из разных единиц измерения в метры.
  6. Сила, спровоцировавшая деформацию, считается силой тяжести тела. Она рассчитывается по формуле: F = mg, где м является массой используемого груза (вес переводится в килограммы), а g (равен 9,8) — постоянная величина, с помощью которой отмечается ускорение свободного падения.

Если вышеописанные вычисления произведены, необходимо найти значение коэффициента жёсткости. Используется закон Гука, из которого следует, что k=F/x.

Решение задач

Для нахождения жёсткости в случае использования разных предметов, включая пружинные маятники с разной частотой колебаний, применяется формула Гука либо следствие, вытекающее из неё.

Задача № 1. Пружина имеет длину 10 см. На неё оказывается сила в 100 Н. Изделие растянулось на 14 см. Нужно найти k.

Решение: предварительно вычисляется абсолютное удлинение: 14−10=4 см. Результат переводится в метры: 0,04 м. Используя основную формулу, находится k. Его значение равняется 2500 Н/м.

Задача № 2. На пружину подвешивается груз массой 10 кг. Изделие растягивается на 4 см. Нужно найти длину, на которую растянется пружина, если использовать груз массой в 25 кг.

Решение: Определяется сила тяжести путем умножения 10 кг на 9.8. Результат записывается в Ньютонах. Определяется k=98/0.04=2450 Н/м. Рассчитывается, с какой силой воздействует второй груз: F=mg=245 Н. Для нахождения абсолютного удлинения используется формула x=F/k. Во втором случае х равняется 0,1 м.

Физика

Закон Гука

Пока пружины не растянуты или сжимаются сверх предела упругости , большинство пружин подчиняются закону Гука, который гласит, что сила, с которой пружина отталкивает, линейно пропорциональна расстоянию от ее равновесной длины:

Fзнак равно-kИкс, {\ Displaystyle F = -kx, \}

где

x — вектор смещения — расстояние и направление, в котором пружина деформируется относительно ее равновесной длины.
F — результирующий вектор силы — величина и направление возвращающей силы, оказываемой пружиной.
K представляет собой скорость , пружины или силовая константа пружины, константа , которая зависит от материала и конструкции весной в. Отрицательный знак указывает на то, что сила, которую оказывает пружина, находится в направлении, противоположном ее смещению.

Винтовые пружины и другие обычные пружины обычно подчиняются закону Гука. Есть полезные пружины, которые этого не делают: пружины, основанные на изгибе балки, могут, например, создавать силы, которые нелинейно изменяются с перемещением.

Конические пружины , изготовленные с постоянным шагом (толщиной проволоки), имеют переменную скорость. Однако можно сделать коническую пружину постоянной жесткостью, создав пружину с переменным шагом. Больший шаг катушек большего диаметра и меньший шаг катушек меньшего диаметра заставляет пружину сжиматься или растягиваться с одинаковой скоростью при деформации.

Простые гармонические колебания

Поскольку сила равна массе m , умноженной на ускорение a , уравнение силы для пружины, подчиняющейся закону Гука, выглядит так:

Fзнак равнома⇒-kИксзнак равнома.{\ Displaystyle F = ma \ quad \ Rightarrow \ quad -kx = ma. \,}

Смещение x как функция времени. Время, которое проходит между пиками, называется периодом .

Масса пружины мала по сравнению с массой присоединенной массы и не учитывается. Поскольку ускорение — это просто вторая производная от x по времени,

-kИксзнак равномd2Иксdт2.{\ displaystyle -kx = m {\ frac {d ^ {2} x} {dt ^ {2}}}. \,}

Это линейное дифференциальное уравнение второго порядка для смещения как функции времени. Перестановка:
Икс{\ displaystyle x}

d2Иксdт2+kмИксзнак равно,{\ displaystyle {\ frac {d ^ {2} x} {dt ^ {2}}} + {\ frac {k} {m}} x = 0, \,}

решение которого является суммой синуса и косинуса :

Икс(т)знак равноАгрех⁡(тkм)+Bпотому что⁡(тkм).{\ displaystyle x (t) = A \ sin \ left (t {\ sqrt {\ frac {k} {m}}} \ right) + B \ cos \ left (t {\ sqrt {\ frac {k} { m}}} \ right). \,}

А{\ displaystyle A}и являются произвольными константами, которые можно найти, рассматривая начальное смещение и скорость массы. График этой функции с (нулевое начальное положение с некоторой положительной начальной скоростью) отображается на изображении справа.
B{\ displaystyle B}Bзнак равно{\ displaystyle B = 0}

Репетитор-онлайн — подготовка к ЦТ

Пример 16. При последовательном соединении трех пружин, коэффициенты жесткости которых относятся как 1 : 2 : 3, сила 12 Н вызвала растяжение системы на 4,0 см. Рассчитать коэффициенты жесткости указанных пружин.

Решение. Величина силы упругости, действующей на пружину, определяется формулой

Fупр = kобщ∆x,

где kобщ — коэффициент жесткости составной пружины; ∆x — указанное в условии задачи растяжение пружины.

Величина силы упругости, с другой стороны, совпадает с величиной приложенной силы:

Fупр = F.

Значение данной силы и величина растяжения пружины под действием этой силы позволяют рассчитать коэффициент жесткости составной пружины:

kобщ=FΔx=124,0⋅10−2=300 Н/м.

Для определения коэффициентов жесткости каждой пружины запишем их коэффициенты жесткости в следующем виде:

для первой пружины

k1 = k;

для второй пружины

k2 = 2k;

для третьей пружины

k3 = 3k,

так как указанные коэффициенты по условию задачи соотносятся между собой как

k1 : k2 : k3 = 1 : 2 : 3.

Для расчета величины k запишем формулу для коэффициента жесткости пружины, состоящей из трех последовательно соединенных пружин, и подставим в нее выражения k1, k2, k3:

1kобщ=1k1+1k2+1k3=1k+12k+13k=116k, или kобщ=6k11.

Найденное ранее значение kобщ = 300 Н/м позволяет рассчитать k = 550 Н/м.

Тогда коэффициенты жесткости каждой из пружин имеют значения:

для первой пружины

k1 = k = 550 Н/м;

для второй пружины

k2 = 2k = 1100 Н/м;

для третьей пружины

k3 = 3k = 1650 Н/м.

Коэффициент жесткости цилиндрической пружины

На практике и в физике довольно большое распространение получили именно цилиндрические пружины. Их ключевыми особенностями можно назвать следующие моменты:

  1. При создании указывается центральная ось, вдоль которой и действует большинство различных сил.
  2. При производстве рассматриваемого изделия применяется проволока определенного диаметра. Она изготавливается из специального сплава или обычных металлов. Не стоит забывать о том, что материал должен обладать повышенной упругостью.
  3. Проволока накручивается витками вдоль оси. При этом стоит учитывать, что они могут быть одного или разного диаметра. Довольно большое распространение получил вариант исполнения цилиндрического типа, но большей устойчивостью характеризуется цилиндрический вариант исполнения, в сжатом состоянии деталь обладает небольшой толщиной.
  4. Основными параметрами можно назвать больший, средний и малый диаметр витков, диаметр проволоки, шаг расположения отдельных колец.

Не стоит забывать о том, что выделяют два типа деталей: сжатия и растяжения. Их коэффициент жесткости определяется по одной и той же формуле. Разница заключается в следующем:

  1. Вариант исполнения, рассчитанный на сжатие, характеризуется дальним расположением витков. За счет расстояние между ними есть возможность сжатия.
  2. Модель, рассчитанная на растяжение, имеет кольца, расположенные практически вплотную. Подобная форма определяет то, что при максимальная сила упругости достигается при минимальном растяжении.
  3. Также есть вариант исполнения, который рассчитан на кручение и изгиб. Подобная деталь рассчитывается по определенным формулам.

Расчет коэффициента цилиндрической пружины может проводится при использовании ранее указанной формулы. Она определяет то, что показатель зависит от следующих параметров:

  1. Наружного радиуса колец. Как ранее было отмечено, при изготовлении детали применяется ось, вокруг которой проводится накручивание колец. При этом не стоит забывать о том, что выделяют также средний и внутренний диаметр. Подобный показатель указывается в технической документации и на чертежах.
  2. Количества создаваемых витков. Этот параметр во многом определяет длину изделия в свободном состоянии. Кроме этого, количество колец определяет коэффициент жесткость и многие другие параметры.
  3. Радиуса применяемой проволоки. В качестве исходного материала применяется именно проволока, которая изготавливается из различных сплавов. Во многом ее свойства оказывают влияние на качества рассматриваемого изделия.
  4. Модуля сдвига, который зависит от типа применяемого материала.

Коэффициент жесткости считается одним из наиболее важных параметров, который учитывается при проведении самых различных расчетов.

Формула определения жесткости

Изучаемая современными школьниками формула, как найти коэффициент жесткости пружины, представляет собой соотношение силы и величины, показывающей изменение длины пружины в зависимости от величины данного воздействия (или

равной ему по модулю силы упругости). Выглядит эта формула так: F = –kx. Из этой формулы коэффициент жесткости упругого элемента равен отношению силы упругости к изменению его длины. В международной системе единиц физических величин СИ он измеряется в ньютонах на метр (Н/м).

Другой вариант записи формулы: коэффициент Юнга

Деформация растяжения/сжатия в физике также может описываться несколько видоизмененным законом Гука. Формула включает значения относительной деформации (отношения изменения длины к ее начальному значению) и напряжения (отношения силы к площади поперечного сечения детали). Относительная деформация и напряжение по этой формуле пропорциональны, а коэффициент пропорциональности – величина, обратная модулю Юнга.

Модуль Юнга интересен тем, что определяется исключительно свойствами материала, и никак не зависит ни от формы детали, ни от ее размеров.

К примеру, модуль Юнга для ста

ли примерно равен единице с одиннадцатью нулями (единица измерения – Н/кв. м).

Смысл понятия коэффициент жесткости

Коэффициент жесткости – коэффициент пропорциональности из закона Гука. Еще он с полным правом называется коэффициентом упругости.

Фактически он показывает величину силы, которая должна быть приложена к упругому элементу, чтобы изменить его длину на единицу (в используемой системе измерений).

Значение этого параметра зависит от нескольких факторов, которыми характеризуется пружина:

  • Материала, используемого при ее изготовлении.
  • Формы и конструктивных особенностей.
  • Геометрических размеров.

По этому показателю можно сд

елать вывод, насколько изделие устойчиво к воздействию нагрузок, то есть каким будет его сопротивление при приложении внешнего воздействия.

Особенности расчета пружин

Показывающая, как найти жесткость пружины, формула, наверное, одна из наиболее используемых современными конструкторами. Ведь применение эти упругие детали находят практически везде, то есть требуется просчитывать их поведение и выбирать те из них, которые будут идеально справляться с возложенными обязанностями.

Закон Гука весьма упрощенно показывает зависимость деформации упругой детали от прилагаемого усилия, инженерами используются более точные формулы расчета коэффициента жесткости, учитывающие все особенности происходящего процесса.

  • Цилиндрическую витую пружину современная инженерия рассматривает как спираль из проволоки с круглым сечением, а ее деформация под воздействием существующих в системе сил представляется совокупностью элементарных сдвигов.
  • При деформации изгиба в качестве деформации рассматривается прогиб стержня, расположенного концами на опорах.

Расчет пружины сжатия из проволоки прямоугольного сечения

Жесткость пружины из проволоки или прутка прямоугольного сечения при тех же габаритах, что и из круглой проволоки может быть гораздо больше. Соответственно и сила сжатия пружины может быть больше.

Основным отличием в расчете, как вы уже догадались, является определение жесткости витка (C 1 ) , задающей жесткость пружины (C ) в целом.

Далее представлены скриншот программы и формулы для цилиндрической стальной пружины из прямоугольной проволоки, у которой поджаты по ¾ витка с каждого конца и опорные поверхности отшлифованы на ¾ длины окружности.

После выполнения расчета по программе выполняйте проверку касательных напряжений!!!

4. I =(D 1 B ) -1

5. При 1/3 Y =5,3942*(H B ) 2 -0,3572*(H /B )+0,5272

При 1 Y =5,4962*(H B ) (-1.715)

При 2H B Y =3 ,9286 *(H B ) (-1. 2339 )

6. При H B C 1 =(78500* H 4 )/(Y * (D 1 B ) 3)

При H > B C 1 =(78500* B 4 )/(Y * (D 1 B ) 3)

8. T nom =1,25*(F 2 C 1 )+H

9. T max =π*(D 1 B )*tg (10 ° )

11. S 3 = T H

12. F 3 = C 1 * S 3

14. N расч =(L 2 H )/(H +F 3 C 1 F 2 C 1 )

16. C = C 1 N

17. L 0 = N * T + H

18. L 3 = N * H + H

19. F 2 = C * L 0 C * L 2

21. F 1 = C * L 0 C * L 1

22. N 1 = N +1,5

23. A =arctg (T /(π *(D 1 H )))

24. L разв =π* N 1 *(D 1 H )/cos (A )

25. Q =H *B * L разв *7,85/10 6

Это интересно: Конденсатор для пуска электродвигателя, как рассчитать мощность — во всех подробностях

Видео

Из этого видео вы узнаете, как определить жесткость пружины.

Чем большей деформации подвергается тело, тем значительней в нем возникает сила упругости. Это значит, что деформация и сила упругости взаимосвязаны, и по изменению одной величины можно судить об изменении другой. Так, зная деформацию тела, можно вычислить возникающую в нем силу упругости. Или, зная силу упругости, определить степень деформации тела.

Если к пружине подвешивать разное количество гирек одинаковой массы, то чем больше их будет подвешено, тем сильнее пружина растянется, то есть деформируется. Чем больше растянута пружина, тем большая в ней возникает силы упругости. Причем опыт показывает, что каждая следующая подвешенная гирька увеличивает длину пружины на одну и туже величину.

Так, например, если исходная длина пружины была 5 см, а подвешивание на ней одной гирьки увеличило ее на 1 см (т. е. пружина стала длиной 6 см), то подвешивание двух гирек увеличит ее на 2 см (общая длина составит 7 см), а трех — на 3 см (длина пружины будет 8 см).

Еще до опыта известно, что вес и возникающая под его действием сила упругости находятся друг с другом в прямопропорциональной зависимости. Кратное увеличение веса во столько же раз увеличит силу упругости. Опыт же показывает, что деформация точно также зависит от веса: кратное увеличение веса во столько же раз увеличивает изменения в длине. Это значит, что, исключив вес, можно установить прямопропорциональную зависимость между силой упругости и деформацией.

Если обозначить удлинение пружины в результате ее растяжения как x или как ∆ l ( l 1 – l , где l — начальная длина, l 1 — длина растянутой пружины), то зависимость силы упругости от растяжения можно выразить такой формулой:

В формуле используется коэффициент k . Он показывает, в какой именно зависимости находятся сила упругости и удлинение. Ведь удлинение на каждый сантиметр может увеличивать силу упругости одной пружины на 0,5 Н, второй на 1 Н, а третьей на 2 Н. Для первой пружины формула будет выглядеть как Fупр = 0,5x, для второй — Fупр = x, для третьей — Fупр = 2x.

Коэффициент k называют жесткостью пружины. Чем жестче пружина, тем труднее ее растянуть, и тем большее значение будет иметь k. А чем больше k, тем больше будет сила упругости (Fупр) при равных удлинения (x) разных пружин.

Жесткость зависит от материала, из которого изготовлена пружина, ее формы и размеров.

Единицей измерения жесткости является Н/м (ньютон на метр). Жесткость показывает, сколько ньютонов (сколько сил) надо приложить к пружине, чтобы растянуть ее на 1 м. Или насколько метров растянется пружина, если приложить для ее растяжения силу в 1 Н. Например, к пружине приложили силу в 1 Н, и она растянулась на 1 см (0,01 м). Это значит, что ее жесткость равна 1 Н / 0,01 м = 100 Н/м.

Также, если обратить внимание на единицы измерения, то станет понятно, почему жесткость измеряется в Н/м. Сила упругости, как и любая сила, измеряется в ньютонах, а расстояние – в метрах

Чтобы уровнять по единицам измерения левую и правую части уравнения Fупр = kx, надо в правой части сократить метры (то есть поделить на них) и добавить ньютоны (то есть умножить на них).

Соотношение между силой упругости и деформацией упругого тела, описываемое формулой Fупр = kx, открыл английский ученый Роберт Гук в 1660 году, поэтому это соотношение носит его имя и называется законом Гука.

Упругой деформацией является такая, когда после прекращения действия сил, тело возвращается в свое исходное состояние. Бывают тела, которые почти нельзя подвергнуть упругой деформации, а у других она может быть достаточно большой. Например, поставив тяжелый предмет на кусок мягкой глины, вы измените его форму, и этот кусок сам уже не вернется в исходное состояние. Однако если вы растяните резиновый жгут, то после того, как отпустите его, он вернет свои исходные размеры. Следует помнить, что закон Гука применим только для упругих деформаций.

Формула Fупр = kx дает возможность по известным двум величинам вычислять третью. Так, зная приложенную силу и удлинение, можно узнать жесткость тела. Зная, жесткость и удлинение, найти силу упругости. А зная силу упругости и жесткость, вычислить изменение длины.

Класс «А» и «В» – существенны ли отличия

Для многих автолюбителей жесткость пружин по цветам равносильна жесткости по классам. Класс «А», независимо от цвета, более жесткий, нежели класс «В». На самом деле это не совсем верное утверждение. Класс «А» действительно больше подходит для автомобилей, которые часто эксплуатируются с высокой нагрузкой. Но разница здесь совсем невелика – порядка 25 кг. Несмотря на обязательное нанесение маркировки, до сих пор встречаются образцы, на которых она отсутствует. В таком случае, даже если цветовая маркировка элементов идентична, от их покупки и использования лучше отказаться.

Многими автомобилистами недооценивается значение качественных пружин, особенно при интенсивной эксплуатации автомобиля. Пружины не зря имеют маркировку по цветам – так гораздо проще сориентироваться начинающему водителю, который впервые занимается собственноручной заменой этого элемента. Приобретение изделий надлежащего качества, пусть и по более высокой цене, неизбежно окупится более мягкой ездой, меньшим износом автомобиля, а также меньшими нагрузками на самого водителя. Научно доказано, что высокие вибрационные нагрузки на человека приводят к быстрой утомляемости и снижению концентрации при движении.

Расчет жесткости цилиндрической пружины

Довольно просто понять как работает плоская пружина. Если положить на край письменного стола линейку и прижать один ее конец рукой к поверхности, но второй можно упруго изгибать, запасая и высвобождая энергию. Очевидно, что в момент изгиба расстояния между молекулами материала в некоторых фрагментах линейки увеличиваются, в некоторых уменьшаются. Электромагнитные связи, действующие между молекулами, стремятся вернуть вещество к прежнему геометрическому состоянию.

Несколько сложнее дело обстоит с цилиндрической пружиной. В ней энергия запасается не благодаря деформации изгиба, а за счет скручивания проволоки, из которой пружина навита, относительно продольной оси этой проволоки.

Представим сильно увеличенное сечение проволоки, из которой навита цилиндрическая пружина, выполненное перпендикулярной ее оси плоскостью. При таком рассмотрении можно абстрагироваться от спиральной формы и мысленно разбить весь объем проволоки на множество соприкасающихся торцевыми поверхностями «цилиндров», диаметр которых равен диаметру проволоки, а высота стремится к нулю. Между соприкасающимися торцами действуют молекулярные силы, препятствующие деформации.

При растяжении или сжатии пружины угол наклона между витками изменяется. Соседние «цилиндры» при этом вращаются друг относительно друга в противоположных направлениях вокруг общей оси. В каждом таком сечении запасается энергия. Отсюда следует, что чем из более длинного куска проволоки навита пружина (здесь играют роль диаметр и высота цилиндра, а также шаг витка), тем большее количество энергии она способна запасти. Увеличение диаметра проволоки также повышает ее энергоемкость. В целом формула, учитывающая основные факторы жесткости пружины, выглядит так:

  • $R$ — радиус цилиндра пружины,
  • $n$ — количество витков проволоки радиуса $r$,
  • $G$ — коэффициент, зависящий от материала.

Рассчитать коэффициент жесткости пружины, выполненной из стальной проволоки с $G = 8 cdot 10^<10>$ Па и диаметром 1 мм. Радиус пружины 20 мм, количество витков – 25.

Подставим в формулу числовые значения, попутно переведя их в единицы системы СИ:

Ответ: $100 frac<Н><м>$

Так и не нашли ответ на свой вопрос?

Просто напиши с чем тебе нужна помощь

Пружины можно назвать одной из наиболее распространенных деталей, которые являются частью простых и сложных механизмов. При ее изготовлении применяется специальная проволока, накручиваемая по определенной траектории. Выделяют довольно большое количество различных параметров, характеризующих это изделие. Наиболее важным можно назвать коэффициент жесткости. Он определяет основные свойства детали, может рассчитываться и применяться в других расчетах. Рассмотрим особенности подобного параметра подробнее.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector