Резистор, для чего он нужен, где применяется в автомобилях

Три основные составляющие электрического тока

Электроэнергия достаточно плотно вошла в нашу жизнь. Используется она практически везде, и в автотранспорте в том числе.

Данный вид энергии имеет три основных составляющих – напряжение, сила тока и сопротивление.

Что касается последнего параметра, то благодаря возможности создания дополнительного сопротивления в любой точке электрической цепи можно влиять на первые два параметра.

Основным элементом для создания сопротивления является резистор. Данный элемент относится к самым востребованным, и ни одна электрическая цепь без него не обходится, и заменить его чем-либо другим не получится. А в любом автомобиле электрических цепей предостаточно.

Формулы

При выборе резистора, помимо его конструктивной особенности, следует обращать внимания на основные его характеристики. А основными его характеристиками, как я уже упоминал, являются сопротивление и мощность рассеяния.

Между этими двумя характеристиками есть взаимосвязь. Что это значит? Вот допустим в схеме у нас стоит резистор с определенной величиной сопротивления. Но по каким-либо причинам мы выясняем, что сопротивление резистора должно быть значительно меньше того, что есть сейчас.

И вот что получается, мы ставим резистор с значительно меньшим сопротивлением и в соответствии с законом Ома мы можем получить небольшое западло.

Так как сопротивление резистора было большим, а напряжение в цепи у нас фиксированное, то вот что получилось. При уменьшении номинала резистора общее сопротивление в цепи упало, следовательно, ток в проводах возрос.

Но что если мы поставили резистор с прежней мощностью рассеяния? При возросшем токе, новый резистор может и не выдержать нагрузки и умереть, его душа улетит вместе с клубком дыма из бездыханного тельца резистора.

Выходит, что при номинале резистора 10 Ом, в цепи будет течь ток равный 1 А.  Мощность, которая будет рассеиваться на резистор. Поэтому при выборе резистора, обязательно нужно смотреть его допустимую мощность рассеяния.

Назначение и функции конденсаторов

Конденсатор играет огромную роль как в аналоговой, так и цифровой технике. Они бывают электролитическими и керамическими, и отличаются своими свойствами, но не общей концепцией. Примеры использования:

  • Фильтрует высокочастотные помехи;
  • Уменьшает и сглаживает пульсации;
  • Разделяет сигнал на постоянные и переменные составляющие;
  • Накапливает энергию;
  • Может использоваться как источник опорного напряжения;
  • Создает резонанс с катушкой индуктивности для усиления сигнала.

Примеры использования

В усилителях обычно используются для защиты сабвуферов, фильтрации питания, термостабилизации и разделение постоянной составляющей от переменной. А электролитические в автономных схемах с микроконтроллерами могут долго обеспечивать питание за счет большой емкости.
В данной схеме транзистор VT1 постоянно открыт, чтобы усиливать звук без искажений. Но если вход замнется или на него поступи постоянный ток, то транзистор откроется, перейдет в насыщение и перегреется. Чтобы этого не допустить, нужен конденсатор. С1 позволяет отделить постоянную оставляющую от переменной. Переменный сигнал легко проходит на базу транзистора, а постоянный сигнал не проходит.

С2 совместно с резистором R3 выполняет функцию термостабилизации. Когда усилитель работает, транзистор нагревается. Это может внести искажения в сигнал. Поэтому, резистор R3 помогает удержать рабочую точку при нагреве. Но когда транзистор холодный и стабилизации не требуется резистор может уменьшить мощность усилителя. Поэтому, в дело вступает С2. Он проводит через себя усиленный сигнал шунтируя резистор, тем самым, не снижая номинальную мощность схемы. Если его емкость будет ниже расчетной, он начнет вносить фазовые искажения в выходной сигнал.

Чтобы схема качественно работала, обязательно хорошее питание. Когда схема в пиковые значения потребляет больше тока, то это всегда сильная нагрузка на источник питания. С3 фильтрует помехи по питанию и помогает снизить нагрузку. Чем больше емкость — тем лучше звук, но до определенных значений, все зависит от схемы.

А в блоках питания используется тот же принцип, как и в предыдущей схеме по питанию, но здесь емкость нужна гораздо больше. На этой схеме емкость элеткролита может быть как 1000 мкФ, так и 10 000 мкФ.

Еще на диодный мост можно параллельно включить керамические конденсаторы, которые будут шунтировать схему от высокочастотных наводок и шума сети 220 В.

Фазовые искажения

Конденсатор может искажать переменный сигнал по фазе. Это происходит из-за неверного расчета емкости, общего сопротивления и взаимодействия с другими радиодеталями. Не стоит забывать и о том, что любая радиодеталь имеет как реактивное, так и активное сопротивление.

Post Views:
1 133

Мощность рассеивания

Помимо сопротивления у резистора есть еще один немаловажный параметр – мощность рассеивания.

Любой резистор выступает своего рода ограничителем и благодаря своему сопротивлению проводит через себя только определенное напряжение и силу тока. При этом излишки, которые он не пропустил в себе не накапливает, а преобразует их в тепловую энергию и рассеивает.

Поэтому предусмотрены обозначения резисторов по мощности рассеивания.

Несоответствие данного элемента по мощности рассеивания приведет к его перегреву и разрушению. Мощность рассеивания измеряется в Ваттах.

Определить мощность рассеивания можно как по напряжению, проходящему через него, так и по силе тока.

Что касается напряжения, то формула для расчета выглядит так:

P= U2/R

Где:

  1. Р – мощность;
  2. U – напряжение в цепи;
  3. R – сопротивление резистора.

Для расчета по силе тока формула имеет такой вид:

P= I2*R

Где:

  1. P – мощность;
  2. I – сила тока, проходящая через резистор;
  3. R – сопротивление.

Важным условием при выборе резистора по данному параметру является то, что мощность рассеивания у него должна быть вдвое больше, чем полученная при расчетах.

К примеру, мы имеем силу тока в 0,1 А и сопротивление резистора в 100 Ом.

Исходя из формулы, получаем мощность рассеиваний в 1 Ватт (0,12 * 100 = 1), но для нормальной работы элемента выбираем резистор с мощностью рассеивания в 2 Ватт.

Отметим, что все изготавливаемые резисторы имеют строго определенное значение мощности рассеивания, что облегчает их выбор.

К тому же можно даже визуально определить, какая у резистора мощность рассеивания. Здесь все просто, чем больше по размерам элемент, тем выше значение.

Здесь мы рассмотрели резисторы – одни из самых распространенных элементов в любой электрической схеме автомобиля. Ведь они позволяют контролировать основные параметры электрической энергии благодаря воздействию всего лишь на одну из ее характеристик.

Напоследок отметим, что при расчетах необходимо следить за размерностью параметров. То есть, использовать только амперы, вольты и омы, и если указано, что сила тока составляет 20 мА, то следует перевести это значение в амперы, получив для расчетов значение в 0,02 А.

Основные характеристики

Чтобы правильно выбрать резистор важно знать, на какие характеристики нужно смотреть при выборе. К его основным параметрам относится:. В большинстве случае этих сведений достаточно

Новички часто забывают о допустимой мощности резистора, и они у них перегорают. Вы можете рассчитать сколько Ватт выделяется на резисторе по формуле, указанной в предыдущем разделе статьи. Покупайте резисторы с запасом по мощности в 20-30%, больше – лучше, меньше – не нужно!

Номинальное сопротивление.
Максимальная рассеиваемая мощность.
Допуск или класс точности. От него зависит, насколько процентов сопротивление деталей из этого класса может отличаться от заявленного.

В большинстве случае этих сведений достаточно. Новички часто забывают о допустимой мощности резистора, и они у них перегорают. Вы можете рассчитать сколько Ватт выделяется на резисторе по формуле, указанной в предыдущем разделе статьи. Покупайте резисторы с запасом по мощности в 20-30%, больше – лучше, меньше – не нужно!

Схема подключения переменных резисторов к Ардуино

Для Подключения управляющих элементов на вход Ардуино разработаны стандартные схемы.

Подключение кнопок

Подключение кнопок хорошо представлена в схемах на рисунках.

Подключение кнопки с помощью стягивающего резистора.

Стягивающий резистор подключен между землей и логическим входом устройства.

Подключение кнопки с помощью подтягивающего резистора.

Подтягивающий резистор включен между линией питания и входом устройства.

Подключение микроконтроллера

Ардуино – это популярный микроконтроллер, в который уже загружен набор базовых АТ команд (как BIOS в компьютере). Этот набор называется прошивкой. Пользователь может самостоятельно перепрошить микроконтроллер под свои задачи. Для выполнения конкретных задач пользователь может сам написать программу на специальном языке программирования, а может использовать уже написанные другими программы. Эти программы называются библиотеки и загружаются через стандартный порт в память микроконтроллера.

Как сделать осциллограф на Ардуино для компьютера, читайте здесь.

Другие

Имея Ардуино с загруженной библиотекой Вы получаете инструмент управляющей нужной системой. Достаточно подключить нужные датчики. Датчики можно подключать цифровые и аналоговые. Цифровые уже ориентированы на работу с Ардуино. Аналоговые подключаются через аналогово-цифровые преобразователи, встроенные в микроконтроллер. Если их не хватает – приходится использовать мультиплексоры.

Спектр датчиков широк и постоянно пополняется новыми. Уже сейчас широко используются в качестве датчиков различные терморезисторы, объемные датчики, фотодатчики, резистивные датчики положения.

Наличие огромного количество уже готовых библиотек также облегчает жизнь изобретателей и просто «рукастых» людей. Возможности Ардуино ограничиваются только их фантазией.

Цепи, состоящие из резисторов

Основная статья: Последовательное и параллельное соединение

Последовательное соединение резисторов

При последовательном соединении резисторов их сопротивления складываются

R=R1+R2+R3+…{\displaystyle R=R_{1}+R_{2}+R_{3}+\ldots }

Доказательство

Так как общая разность потенциалов равна сумме её составляющих: U=U1+U2+U3+…{\displaystyle U=U_{1}+U_{2}+U_{3}+\ldots }

А из закона Ома падение напряжения Ui{\displaystyle U_{i}} на каждом сопротивлении Ri{\displaystyle R_{i}} равно: Ui=IiRi{\displaystyle U_{i}=I_{i}R_{i}}

при этом из закона сохранения заряда, через все резисторы идёт одинаковый ток I{\displaystyle I}, поэтому подставляя в формулу для суммы напряжений закон Ома, записываем: IR=IR1+IR2+IR3+…{\displaystyle IR=IR_{1}+IR_{2}+IR_{3}+\ldots }

Делим всё на ток I{\displaystyle I} и получаем: R=R1+R2+R3+…{\displaystyle R=R_{1}+R_{2}+R_{3}+\ldots }

Если R1=R2=R3=…=Rn{\displaystyle R_{1}=R_{2}=R_{3}=…=R_{n}}, то общее сопротивление равно: R=nR1{\displaystyle R=nR_{1}}

При последовательном соединении резисторов их общее сопротивление будет больше наибольшего из сопротивлений.

Параллельное соединение резисторов

При параллельном соединении резисторов складываются величины, обратные сопротивлению (то есть общая проводимость 1R{\displaystyle {\frac {1}{R}}} складывается из проводимостей каждого резистора 1Ri{\displaystyle {\frac {1}{R_{i}}}})

1R=1R1+1R2+1R3+…{\displaystyle {\frac {1}{R}}={\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+\ldots }

Если цепь можно разбить на вложенные подблоки, последовательно или параллельно включённые между собой, то сначала считают сопротивление каждого подблока, потом заменяют каждый подблок его эквивалентным сопротивлением, таким образом находится общее (искомое) сопротивление.

Доказательство

Так как заряд при разветвлении тока сохраняется, то: I=I1+I2+I3+…{\displaystyle I=I_{1}+I_{2}+I_{3}+\ldots }

Из закона Ома ток Ii{\displaystyle I_{i}} через каждый резистор равен: Ii=UiRi{\displaystyle I_{i}={\frac {U_{i}}{R_{i}}}}, но разность потенциалов на всех резисторах будет одинакова, поэтому перепишем уравнение суммы токов: UR=UR1+UR2+UR3+…{\displaystyle {\frac {U}{R}}={\frac {U}{R_{1}}}+{\frac {U}{R_{2}}}+{\frac {U}{R_{3}}}+\ldots }

Делим всё на U{\displaystyle U} и получаем общую проводимость 1R=1R1+1R2+1R3+…{\displaystyle {\frac {1}{R}}={\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+\ldots }, и общее сопротивление R=11R1+1R2+1R3+…{\displaystyle R={\frac {1}{{\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+\ldots }}}

Для двух параллельно соединённых резисторов их общее сопротивление равно: R=R1R2R1+R2{\displaystyle R={\frac {R_{1}R_{2}}{R_{1}+R_{2}}}}.

Если R1=R2=R3=…=Rn{\displaystyle R_{1}=R_{2}=R_{3}=…=R_{n}}, то общее сопротивление равно: R=R1n{\displaystyle R={\frac {R_{1}}{n}}}

При параллельном соединении резисторов их общее сопротивление будет меньше наименьшего из сопротивлений.

Смешанное соединение резисторов

Схема состоит из двух параллельно включённых блоков, один из них состоит из последовательно включённых резисторов R1{\displaystyle R_{1}} и R2{\displaystyle R_{2}}, общим сопротивлением R1+R2{\displaystyle R_{1}+R_{2}}, другой из резистора R3{\displaystyle R_{3}}, общая проводимость будет равна 1R=1(R1+R2)+1R3{\displaystyle {\frac {1}{R}}={\frac {1}{(R_{1}+R_{2})}}+{\frac {1}{R_{3}}}}, то есть общее сопротивление R=R3(R1+R2)R1+R2+R3{\displaystyle R={\frac {R_{3}(R_{1}+R_{2})}{R_{1}+R_{2}+R_{3}}}}.

Для расчёта таких цепей из резисторов, которые нельзя разбить на блоки, последовательно или параллельно соединённые между собой, применяют правила Кирхгофа. Иногда для упрощения расчётов бывает полезно использовать преобразование треугольник-звезда и применять принципы симметрии.

Определение

Резистор происходит от английского «resistor» и от латинского «resisto», что в переводе на русский язык звучит как «сопротивляюсь». В русскоязычной литературе наравне со словом «резистор» используют слово «сопротивление». Из названия ясна основная задача этого элемента – оказывать сопротивление электрическому току.

Он относится к группе пассивных элементов, потому что в результате его работы ток может только понижаться, то есть в отличие от активных элементов – пассивные сами по себе не могут усиливать сигнал. Что из второго закона Кирхгофа и закона Ома значит, что при протекании тока на резисторе падает напряжение, величина которого равна величине протекающего тока, умноженного на величину сопротивления. Ниже вы видите, как обозначается сопротивление на схеме:

Условное обозначение на схеме легко запомнить – это прямоугольник, по ГОСТ 2.728-74 его размеры равны 4х10 мм. Существуют варианты обозначений для резисторов разной мощности рассеивания.

Классификация резисторов

Три резистора разных номиналов для поверхностного монтажа (SMD), припаянные на печатную плату

Резисторы являются элементами электронной аппаратуры и могут применяться как дискретные компоненты или как составные части интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду ВАХ,R по способу защиты и по способу монтажа, характеру изменения сопротивления, технологии изготовления.

По назначению:

  • резисторы общего назначения;
  • резисторы специального назначения:
    • высокоомные (сопротивления от десятка МОм до единиц ТОм, рабочие напряжения 100—400 В);
    • высоковольтные (рабочие напряжения — десятки кВ);
    • высокочастотные (имеют малые собственные индуктивности и ёмкости, рабочие частоты до сотен МГц);
    • прецизионные и сверхпрецизионные (повышенная точность, допуск 0,001 — 1 %).

По характеру изменения сопротивления:

Постоянные резисторы (для навесного монтажа).

Переменный резистор.

Подстроечные резисторы.

Прецизионный многооборотный подстроечный резистор.

  • постоянные резисторы;
  • переменные регулировочные резисторы;
  • переменные подстроечные резисторы.

По способу защиты от влаги:

  • незащищённые;
  • лакированные;
  • компаундированные;
  • впрессованные в пластмассу;
  • герметизированные;
  • вакуумные.

По способу монтажа:

  • для печатного монтажа;
  • для навесного монтажа;
  • для микросхем и микромодулей.

По виду вольт-амперной характеристики:

  • линейные резисторы;
  • нелинейные резисторы:
    • варисторы — сопротивление зависит от приложенного напряжения;
    • терморезисторы — сопротивление зависит от температуры;
    • фоторезисторы — сопротивление зависит от освещённости;
    • тензорезисторы — сопротивление зависит от деформации резистора;
    • магниторезисторы — сопротивление зависит от величины магнитного поля.
    • мемристоры (разрабатываются) — сопротивление зависит от протекавшего через него заряда (интеграла тока за время работы).

По виду используемых проводящих элементов:

Проволочный резистор с отводом.

Плёночный угольный резистор (часть защитного покрытия удалена для демонстрации токопроводного слоя).

  • Проволочные резисторы. Наматываются из проволоки или ленты с высоким удельным сопротивлением на какой-либо каркас. Обычно имеют значительную паразитную индуктивность. Для снижения паразитной индуктивности почти всегда выполняются с бифилярной намоткой. Высокоомные малогабаритные проволочные резисторы иногда изготавливают из микропровода. Иные типы резисторов называются непроволочными резисторами.
  • Непроволочные резисторы. Резистивный элемент представляет собой объёмную структуру физического тела или поверхностного слоя, образованного на изоляционных деталях (тонкую плёнку металлического сплава или композитного материала с высоким удельным сопротивлением, низким коэффициентом термического сопротивления, обычно нанесённую на цилиндрический керамический сердечник). Концы сердечника снабжены напрессованными металлическими колпачками с проволочными выводами для монтажа. Иногда, для повышения сопротивления, в плёнке исполняется винтовая канавка для формирования спиральной конфигурации проводящего слоя. Сейчас это наиболее распространённый тип резисторов для монтажа в отверстия печатных плат. По такому же принципу выполнены резисторы в составе гибридной интегральной микросхемы: в виде металлических или композитных плёнок, нанесённых на обычно керамическую подложку методом напыления в вакууме или трафаретной печати.

По виду применяемых материалов:

  • Углеродистые резисторы. Изготавливаются в виде плёночных и объёмных. Плёнки или резистивные тела представляют собой смеси графита с органическими или неорганическими веществами.
  • Металлопленочные или металлоокисные резисторы. В качестве резистивного материала используется тонкая металлическая лента.
  • Композиционные резисторы.
  • Проволочные резисторы.
  • Интегральный резистор. Резистивный элемент — слаболегированный полупроводник, формируемый в кристалле микросхемы в виде обычно зигзагообразного канала, изолированного от других цепей микросхемы p-n переходом. Такие резисторы имеют большую нелинейность вольт-амперной характеристики. В основном используются в составе интегральных монокристаллических микросхем, где применить другие типы резисторов принципиально невозможно.

Характеристики и параметры

Пределы границ сопротивлений для деталей общего назначения находятся в промежутке от 10 Ом до 10 МОм. Для таких компонентов номинальная мощность рассеивания составляет 0,125 – 100 Вт.

Сопротивление высокоомных деталей составляет порядка 10 13 Ом. Такие изделия применяются в измерительных устройствах, предназначенных для малых токов. Величины номинальных мощностей на корпусах таких компонентов могут не указываться. Рабочее напряжение от 100 до 300 В.

Класс высоковольтных деталей предназначен для работы под напряжением 10 – 35 кВ. Их сопротивление достигает 10 11 Ом.

Для высокочастотных резисторов важен номинал рабочей частоты. Они способны работать на частотах свыше 10 МГц. Высокочастотные токи сильно нагревают детали. При интенсивном охлаждении номинальные мощности таких компонентов достигают величин 5, 20, 50 кВт.

В точных измерительных и вычислительных устройствах, а также в релейных системах применяются прецизионные резисторы. Они обладают высокой стабильностью параметров. Мощность рассеивания у таких деталей не превышает 2 Вт, а номинальное сопротивление лежит в пределах 1 – 10 6 Ом.

Общая концепция

Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.
Обозначается на схеме двумя параллельными линиями.

Принцип работы

Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.

Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.


Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.

Основное свойство конденсатора — это емкость. Она зависит от площади пластин, расстояния между ними и материала диэлектрика, которым заполняют пространство между обкладками.

По мере накопления зарядов, поле начинает ослабевать, а сопротивление нарастает. Почему так происходит? Места на обкладках все меньше, одноименные заряды на них действуют друг на друга, а напряжение на конденсаторе становится равным источнику тока. Такое сопротивление называется реактивным, или емкостным. Оно зависит от частоты тока, емкости радиодеталей и проводов.

Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратится. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.

А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. Но если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.

Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.

Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.

Конденсатор и цепь постоянного тока

Добавим в схему лампочку. Она загорится только во время зарядки.
Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.

По мере зарядки, лампочка начинает тусклее светиться.

Лампочка затухает при полной зарядке.

Постоянный электрический ток не проходит через конденсатор только после его зарядки.

Цепь с переменным током

А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.


Электростатическая индукция возникает постоянно, если электрический ток переменный. Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.


Поэтому, конденсатор пропускает переменный электрический ток.

Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.

Физическая сущность

Изучение учёными электричества привело к пониманию, что существует что-то, мешающее свободным зарядам проходить через вещество. Способность тела пропускать через себя электрический ток была названа электропроводимостью. Как выяснилось позже, она определяется количеством свободных зарядов, присутствующих в структуре элемента, характером внешнего воздействия и физическими размерами тела. Все существующие вещества были разделены на три вида:

  • проводники;
  • полупроводники;
  • диэлектрики.

К первой группе отнесли материалы, при прохождении через которые значение электрического тока практически не уменьшается. Это все металлы и электролиты. Ко второй — элементы, проводимость которых существенно изменяется при воздействии на них внешних факторов, таких как температура, свет, электромагнитное излучение. Например, кремний, германий, селен. Диэлектриками назвали вещества, практически полностью поглощающие энергию электронов, то есть преобразовывающие электрическую мощность в тепловую. Яркими представителями этой группы являются: каучук, пластмассы, композиционные материалы (текстолит, гетинакс, второпласт).

Это слово произошло от латинского resisto, что в дословном переводе на русский язык звучит как «сопротивляюсь». Правильное его определение, которое можно встретить в специализированной литературе, звучит следующим образом: «Резистор, или сопротивление, представляет собой пассивную радиодеталь в электрической цепи, характеризующуюся постоянной или изменяемой величиной проводимости. Он предназначен для преобразования силы тока в разность потенциалов или наоборот».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector