Плавное включение и выключение светодиодов

Схемы плавного включения и выключения светодиодов

Существует два популярных и доступных для самостоятельного изготовления варианта схем плавного розжига для светодиодов:

  1. Простейшая.
  2. С функцией установки периода пуска.

Рассмотрим, из каких элементов они состоят, каков алгоритм их работы и главные особенности.

Простая схема плавного включения выключения светодиодов

Только на первый взгляд схема плавного розжига, представленная ниже, может показаться упрощенной. В действительности она весьма надежна, недорога и отличается множеством преимуществ.

В ее основе лежат следующие комплектующие:

  1. IRF540 – транзистор полевого типа (VT1).
  2. Емкостный конденсатор на 220 мФ, номиналом на 16 вольт (C1).
  3. Цепочка резисторов на 12, 22 и 40 килоОм (R1, R2, R3).
  4. Led-кристалл.

Устройство работает от источника питания постоянного тока на 12 В по следующему принципу:

  1. При запитывании цепи через блок R2 начинает течь ток.
  2. Благодаря этому элемент C1 постепенно заряжается (повышается номинал емкости), что в свою очередь способствует медленному открыванию модуля VT.
  3. Увеличивающийся потенциал на выводе 1 (затворе полевика) провоцирует похождение тока через R1, что способствует постепенному открыванию вывода 2 (стока VT).
  4. Как результат, ток переходит на исток полевого блока и на нагрузку и обеспечивает плавный розжиг светодиода.

Процесс угасания лед-элемента идет по обратному принципу – после снятия питания (размыкания «управляющего плюса»). При этом конденсаторный модуль, постепенно разряжаясь, передает потенциал емкости на блоки R1 и R2. Скорость процесса регламентируется номиналом элемента R3.

Основным элементом в системе плавного розжига для светодиодов является транзистор MOSFET IRF540 полевого n-канального типа (как вариант можно использовать российскую модель КП540).

Остальные компоненты относятся к обвязке и имеют второстепенное значение. Поэтому нелишним будет привести здесь его основные параметры:

  1. Сила тока стока – в пределах 23А.
  2. Значение полярности – n.
  3. Номинал напряжения сток-исток – 100В.

Доработанный вариант с возможностью настройки времени

Нередко возникает необходимость изменения периода плавного розжига светодиодов. Рассмотренная выше схема не дает такой возможности. Поэтому в нее нужно внедрить еще два полупроводниковых компонента – R4 и R5. С их помощью можно задавать параметры сопротивления и тем самым контролировать скорость зажигания диодов.

Приведенные выше версии схем предполагают управление по плюсу, однако в некоторых ситуациях требуется контроль по минусу. В таком случае система будет иметь обратную полярность. Поэтому в ней нужно поставить конденсатор наоборот – чтобы плюсовой заряд шел на транзисторный исток. Кроме того, необходимо заменить и сам транзистор, теперь он должен быть p–канального типа, к примеру, IRF9540N.

Плавное включение и выключение светодиодов: схемы розжига

В некоторых случаях требуется реализовать схему плавного включения или выключения светодиода (LED). Особенно востребовано данное решение в организации дизайнерских решениях.

Для осуществления задуманного есть два пути решения. Первый – покупка готового блока розжига в магазине. Второй – изготовление блока своими руками.

В рамках статьи выясним, почему стоит прибегнуть ко второму варианту, а также разберем самые популярные схемы.

Покупать или делать самому?

Если нужно срочно или нет желания и времени собирать блок плавного включения светодиодов своими руками, то можно и купить готовое устройство в магазине. Единственный минус – цена. Стоимость некоторых изделий, в зависимости от параметров и производителя, может превышать в несколько раз себестоимости устройства сделанного своими руками.

Если есть время и особенно желание, то стоит обратить внимание на давно разработанные и проверенные временем схемы плавного включения и выключения светодиодов

Что нужно

Для того, чтобы собрать схему плавного розжига светодиодов в первую очередь потребуется небольшой набор радиолюбителя, как навыков, так и инструментов:

  • паяльник и припой;
  • текстолит для платы;
  • корпус будущего устройства;
  • набор полупроводниковых приборов (резисторы, транзисторы, конденсаторы, светодиоды, диоды и т.д.);
  • желание и время;

Как видно из списка, ничего особенного и сложного не требуется.

Основа основ плавного включения

Давайте начнем с элементарных вещей и вспомним, что такое RC – цепь и как она связана с плавным розжигом и затуханием светодиода. Посмотрите на схему.

В ее состав входит всего три компонента:

  • R – резистор;
  • C – конденсатор;
  • HL1 – подсветка (светодиод).

Два первых компонента и составляют RC – цепь (произведение сопротивления и емкости). От увеличения сопротивления R и емкости конденсатора C увеличивается время розжига LED. При уменьшении, наоборот.

Мы не будем углубляться в основы электроники и рассматривать, как протекают физические процессы (точнее ток) в данной схеме. Достаточно знать, что она лежит в основе работы всех устройств плавного розжига и затухания.

Рассмотренный принцип RC – задержки лежит в основе всех решений плавного включения и выключения светодиодов.

Схемы плавного включения и выключения светодиодов

Разбирать громоздкие схемы не имеет смысла, т.к. для решения большинства задач справляются простые устройства, работающие на элементарных схемах. Рассмотрим одну из таких схем плавного включения и выключения светодиодов. Несмотря на простоту, она имеет ряд плюсов, высокую надежность и низкую себестоимость.

Состоит из следующих деталей:

  • VT1 – полевой транзистор IRF540;
  • C1 – конденсатор емкостью 220 mF и напряжением 16V;
  • R1, R2, R3 – резисторы номиналом 10, 22, 40 kOm соответственно;
  • LED – светодиод.

Работает от напряжения 12 Вольт по следующему алгоритму:

  1. При включении схемы в цепь питания через R2 протекает ток.
  2. В это время C1 набирает емкость (заряжается), что обеспечивает постепенное открытие полевика VT
  3. Возрастающий ток на затворе (вывод 1) протекает через R1, и заставляет постепенно открываться сток полевика VT
  4. Ток уходит на исток все того же полевика VT1 и далее на LED.
  5. Светодиод постепенно усиливает излучение света.

Параллельное подключение

При параллельном подключении светодиодов, напряжение на них будет одинаковым. А так как не существует двух диодов с абсолютно одинаковыми характеристиками, то будет наблюдаться следующая картина: через какой-то светодиод будет идти ток ниже номинального (и светить он будет так себе), зато через соседний светодиод будет херачить ток в два раза превышающий максимальный и через полчаса он сгорит (а может и быстрее, если повезет).

Очевидно, что такого неравномерного распределения мощностей нужно избегать.

Для того, чтобы существенно сгладить разброс в ТТХ светодиодов, лучше подключать их через ограничительные резисторы. Напряжение блока питания при этом может быть существенно выше прямого напряжения на светодиодах. Как подключать светодиоды к источнику питания показано на схеме:

Проблема такой схемы подключения светодиода в том, что чем больше разница между напряжением блока питания и напряжением на диодах, тем больше бесполезной мощности рассеивается на ограничительных резисторах и тем, соответственно, ниже КПД всей схемы.

Ограничение тока происходит по простой схеме: повышение тока через светодиод приводит к повышению тока и через резистор тоже (т.к. они включены последовательно). На резисторе увеличивается падение напряжения, а на светодиоде, соответственно, уменьшается (т.к. общее напряжение постоянно). Уменьшение напряжения на светодиоде автоматически приводит к снижению тока. Так все и работает.

В общем, сопротивление резисторов рассчитывается по закону Ома. Разберем на конкретном примере. Допустим, у нас есть светодиод с номинальным током 70 мА, рабочее напряжение при таком ток равно 3.6 В (это все берем из даташита к светодиоду). И нам нужно подключить его к 12 вольтам. Значит, нам нужно рассчитать сопротивление резистора:

Получается, что для питания светодиода от 12 вольт нужно подключить его через 1-ваттный резистор на 120 Ом.

Точно таким же образом, можно посчитать, каким должно быть сопротивление резистора под любое напряжение. Например, для подключение светодиода к 5 вольтам сопротивление резистора надо уменьшить до 24 Ом.

Значения резисторов под другие токи можно взять из таблицы (расчет производился для светодиодов с прямым напряжением 3.3 вольта):

Uпит ILED
5 мА 10 мА 20 мА 30 мА 50 мА 70 мА 100 мА 200 мА 300 мА
5 вольт 340 Ом 170 Ом 85 Ом 57 Ом 34 Ом 24 Ом 17 Ом 8.5 Ом 5.7 Ом
12 вольт 1.74 кОм 870 Ом 435 Ом 290 Ом 174 Ом 124 Ом 87 Ом 43 Ом 29 Ом
24 вольта 4.14 кОм 2.07 кОм 1.06 кОм 690 Ом 414 Ом 296 Ом 207 Ом 103 Ом 69 Ом

При подключении светодиода к переменному напряжению (например, к сети 220 вольт), можно повысить КПД устройства, взяв вместо балластного резистора (активного сопротивления) неполярный конденсатор (реактивное сопротивление). Подробно и с конкретными примерами мы разбирали этот момент в статье про подключение светодиода к 220 В.

Как снять плафон освещения салона самостоятельно?

Этот вопрос обычно встает только перед новичками, недавно севшими за руль, владельцы автомобилей, имеющие большой стаж, как правило, знакомы со всеми хитростями, если, конечно, не предпочитают личного механика-водителя. Однако прежде, чем ответить на этот вопрос, зададим другой – а зачем это нужно? Ведь разные ситуации предполагают и действия различные. Если вы хотите поменять лампочку – схема работы будет типовая, если лопнул рассеиватель и требует замены, плафон снимать вообще не придется.

Но давайте вернемся к плану действий и рассмотрим его поэтапно, а уже потом решим, для каких целей можно использовать эти знания. Перед тем, как снять плафон освещения салона или поменять лампочку, что гораздо проще, необходимо отделить от основания рассеиватель

. Обычно он удерживается пружинными зажимами или на крепежах-флажках, в первом случае колпак достаточно потянуть, во втором – нужно аккуратно подцепить «минусовой» отверткой.

И вот перед вами сама осветительная начинка, можно менять лампочку. Определите источник света, в зависимости от типа вам придется внимать его из гнезда, надавив на пружинный зажим, если это лампа накаливания, либо отсоединять провода от контактов люминесцентной лампы. Второй вариант подразумевает предварительное снятие кожуха, защищающего выводы электропитания путем откручивания пары винтов. Сам плафон удерживают обычно 2-4 винта, вывернув которые, можно легко извлечь корпус из отверстия в обшивке. Далее остается только отсоединить разъем проводов.

Статья в тему: Автомобильный ионизатор воздуха – в салоне свежо, как после грозы!

Последовательное подключение

При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.

Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).

Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:

Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ — конечно, последовательным!

Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.

Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.

Вот пример готового устройства:

Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64…106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток — это от него уже не зависит.

И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.

Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.

Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:

Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) — либо через токоограничительный резистор, либо через токозадающий драйвер.

Подключение с использованием блока защиты

Обычно для решения этой проблемы используется блок защиты, который и выполняет функцию УПВЛ. При использовании с лампами накаливания данного устройства напряжение при включении возрастает не так резко, а постепенно повышается. Таким образом, нить накаливания не испытывает излишних перегрузок, и срок эксплуатации лампочки возрастает.

Рассмотрим подробнее схему работы этого устройства на примере блока Uniel Upb-200W-BL, последовательно подключенного к лампе накаливания в 75 Вт. В этой схеме ток сначала проходит через блок и уже потом идет на лампу. В результате этого происходит дополнительное падение напряжения, и на лампу поступает не стандартные 220, а 171 В. Причем за счет прохождения тока через блок защиты рост напряжения до 171 В происходит плавно за 2-3 секунды.

Uniel Upb-200W-BL для плавного запуска

Снижение поступающего напряжения также способствует увеличению сроку эксплуатации лампочки. Но, с другой стороны, пониженное напряжение значительно снижает световой поток, примерно, на 70 процентов, а это существенный показатель. Поэтому при использовании блока защиты необходимо учитывать потери по освещенности и использовать более мощные, по сравнению с обычными, лампы.

Рассматриваемый в нашей схеме блок может выдерживать мощность до 200 Вт, значит, к нему можно подключать лампы примерно такой же мощности. Но лучше задать небольшой запас в 20-25 процентов и использовать в схеме лампы с суммарной мощностью не более 160 Вт. За счет запаса мощности лампы и сам блок прослужат дольше. Естественно, что и на сам блок не стоит подавать напряжение больше, чем 200 ВТ.

Обратите внимание! При понижении мощности лампы накаливания цветовая температура изменяется, и свет становится более красным. Изменения цвета освещения может сказаться на самочувствии человека

Схема плавного включения ламп накаливания довольно простая. Блок устанавливается последовательно от выключателя к лампе, то есть в разрыв фазного провода.

Сам блок зашиты можно разместить в двух местах:

  1. рядом с осветительным прибором;
  2. у выключателя – в этом случае блок располагается в распределительной или установочной коробке.

Размещение блока защиты

Выбор места зависит от размеров блока защиты, для слишком большого прибора придется выделять отдельное место. Недостаток размещения в подрозетнике состоит в том, что блок зашиты не будет иметь достаточного доступа воздуха для охлаждения.

Порядок подключения Блока Плавного Розжига (БПР) на ближний свет

Понадобится:

  1. 4 мамы широкие
  2. 4 папы широкие
  3. 2 мамы узкие
  4. 2 папы узкие

«Тройник» для разветвления на монтажном блоке массы

Цепляем на три длинных провода (по 35 сантиметров) разъемы «мама» и «папа». Получается что то вроде удлинителя реле ближнего света. Присоединяем разъемы «мама» и «папа» на провода БПР (Вход +12В — «мама», Выход — галоген — «папа»).

Вытащив реле ближнего света (напомню К4) цепляем на него «удлинитель» на все контакты, кроме 87.

Для удобства можно скрепить «удлинитель» стяжками. Справа масса (зелёный провод — в блок предохранителей)

Вставляем конец «удлинителя» в блок предохранителей наместо реле. 

На другой конец — соответственно реле, которое вытаскивали ранее.

В реле на 87-ю «ногу» одеваем разъем «мама» от БПР (вход +12В), а в блок предохранителей вставляем разъем «папа» (Выход — Галоген), где должна быть «нога» 87.

Окончательный вариант собранной конструкции.

Массу (масса -12 В) берем от куда удобнее (например, с колодки Ш2 монтажного блока — контакт 4. Вытаскиваем провод (черный) из колодки, вместо него вставляем заготовленный «тройник» от БПР.

Чтобы удобно закрепить реле внутри блока предохранителей, можно купить колодку для реле с защелкой. И закрепить на задней стенке монтажного блока.

Каждый контакт изолируем (термоусадками, гофрами)

Схема подключения:

Это интересно: Открытая ретро проводка в деревянном доме — красивые винтажные розетки и выключатели + фото

Плавный розжиг и затухание светодиодов, схема

Простой электро тюнинг автомобиля с помощью плавно вспыхивающих и гаснущих светодиодов. Отечественные автомобили выпускаются с расчётом на среднего потребителя. Многих автолюбителей это не устраивает, поэтому такое авто стремятся доработать. Прежде всего, это касается подсветки приборной доски и салона.

Устройство плавной регулировки светодиодной подсветки можно собрать самому. В интернете легко найти интересную схему.

Без всякого сомнения, самой простой и надёжной является схема на полевом транзисторе. Рассмотрим подробнее.

Подсветка приборки.

Когда говорят о доработке приборной панели, то имеют в виду тюнинг электрики, который позволяет с помощью светодиодов сделать её уникальной.

Немного о работе схемы….

После включения зажигания, схема запитывается напряжением +12 V и переводится в режим ожидания.

При включении габаритов управляющее напряжение +12 V через цепочку, состоящую из диода D2 и резистора R1, поступает на транзистор КТ 503. Транзистор открывается. Электролитический конденсатор С1 заряжается.

Плавно растущее напряжение, подаётся на полевой транзистор VT1. Он плавно открывается, и постепенно увеличивает выходное напряжение, поступающее на светодиоды. Происходит их плавное загорание.

При выключении габаритов, снимается управляющее напряжение, и закрывается транзистор КТ 503. Электролитический конденсатор С1 плавно разряжается через R3. Следовательно, уменьшается напряжение на транзисторе VT1, а значит и выходное напряжение.

По мере разрядки конденсатора гаснут светодиоды.

Когда конденсатор полностью разрядится, схема снова переходит в режим ожидания, при котором потребляемый ток почти отсутствует.

Нагрузкой транзистора VT1 может быть сборка на светодиодах LED или светодиодная лента. Транзистор IRF 9540 может работать с нагрузкой до 140 Вт.

В схеме допускается производить регулировки:

Подсветка салона

Плавная подсветка салона имеет свои достоинства:

во-вторых, плавное изменение освещения положительно влияет на эстетику салона, и делает его более привлекательным.

Управление по «минусу»

Выше переведенные схемы отлично подходят для применения в автомобиле. Однако сложность некоторых электрических схем состоит в том, что часть контактов замыкается по плюсу, а часть – по минусу (общему проводу или корпусу). Чтобы управлять приведенной схемой по минусу питания, её нужно немного доработать. Транзистор нужно заменить на p-канальный, например IRF9540N. Минусовой вывод конденсатора соединить с общей точкой трёх резисторов, а плюсовой вывод замкнуть на исток VT1. Доработанная схема будет иметь питание с обратной полярностью, а управляющий плюсовой контакт сменится на минусовой.

Недавно решил собрать схему, которая позволила бы мне любую светодиодную ленту (будь то в автомобиле или дома) плавно разжигать.

Изобретать велосипед я не стал, и решил немного поить При поиске почти на каждом сайте находил схемы, где светодиодная нагрузка сильно ограничивается возможностями схемы. Мне же хотелось, чтобы схема всего лишь плавно поднимала напряжение на выходе, чтобы диоды плавно разгорались и схема было обязательно пассивной (не требовала дополнительного питания и в режиме ожидания не потребляла бы ток) и обязательно была бы защищена стабилизатором напряжения для увеличения срока жизни моей подсветки.

А так как плат пока я травить не научился, то решил что сначала нужно освоить самые простые схемы и при монтаже использовать готовые монтажные платы, которые как и остальные компоненты схемы, можно приобрести в любом магазине радиодеталей.

Для того что собрать схему плавного розжига светодиодов со стабилизацией мне нужно было приобрести следующие компоненты:

Вообще, готовая монтажная плат достаточно удобная альтернатива так называемому методу «ЛУТ» где с помощью программы Sprint-Layout, принтера и того же текстолита можно собрать почти любую схему. Так вот, новичкам следует всё таки сначала освоить более простой вариант, который значительно проще и что самое главное «прощает ошибки» и так же не требует наличия паяльной станции.

Немного упростив исходную схему решил её перерисовать:

В некоторых случаях от LED ламп или индикаторов требуется плавное включение и выключение. Естественно светодиод при обычной подаче питания включается мгновенно (в отличии от ламп накаливания), что требует применения в данном случае небольшой схемы управления. Она не сложная и в простейшем варианте представляет собой всего десяток радиодеталей, во главе с парочкой транзисторов.

Схемы плавного включения и выключения светодиодов

Разбирать громоздкие схемы не имеет смысла, т.к. для решения большинства задач справляются простые устройства, работающие на элементарных схемах. Рассмотрим одну из таких схем плавного включения и выключения светодиодов. Несмотря на простоту, она имеет ряд плюсов, высокую надежность и низкую себестоимость.

Состоит из следующих деталей:

  • VT1 – полевой транзистор IRF540;
  • C1 – конденсатор емкостью 220 mF и напряжением 16V;
  • R1, R2, R3 – резисторы номиналом 10, 22, 40 kOm соответственно;
  • LED – светодиод.

Работает от напряжения 12 Вольт по следующему алгоритму:

  1. При включении схемы в цепь питания через R2 протекает ток.
  2. В это время C1 набирает емкость (заряжается), что обеспечивает постепенное открытие полевика VT
  3. Возрастающий ток на затворе (вывод 1) протекает через R1, и заставляет постепенно открываться сток полевика VT
  4. Ток уходит на исток все того же полевика VT1 и далее на LED.
  5. Светодиод постепенно усиливает излучение света.

Затухание светодиода происходит при снятии питания. Принцип обратный. После отключения питания, конденсатор C1 начинает постепенно отдавать свою емкость на сопротивления R1 и R2.

Главный элемент – это полевой n-канальный MOSFET транзистор IRF540, все остальные полупроводниковые приборы играют вспомогательную роль (обвязка). Стоит отметить его важные характеристики:

  • ток стока: до 23 Ампер;
  • полярность: n;
  • напряжение сток – исток: 100 Вольт.

Причины преждевременного перегорания

Лампы накаливания – старый источник света, его конструкция предельно проста – в герметичной стеклянной колбе установлена спираль из вольфрама, когда через нее течет ток, она нагревается и начинает светиться.

Однако такая простота не значит долговечность и надежность. Их срок службы порядка 1000 часов, а часто и того меньше. Причиной перегорания могут стать:

  • скачки напряжения в питающей сети;
  • частые включения и выключения;
  • другие причины типа перепадов температуры, механических повреждений и вибраций.

В этой статье мы рассмотрим, как минимизировать вред от частых включений лампы. Когда лампочка выключена, ее спираль холодная. Ее сопротивление в 10 раз ниже, чем у горячей спирали. Основным режимом работы является горячее состояние лампы. Из закона Ома известно, что ток зависит от сопротивления, чем оно ниже, тем выше ток.

Когда вы включаете лампу, через холодную спираль протекает большой ток, но по мере ее нагрева он начинает снижаться. Первоначальный высокий ток оказывает разрушительное воздействие на спираль. Для того чтобы этого избежать нужно организовать плавное включение ламп накаливания.

Диммер для плавного включения

Принцип работы

Чтобы ограничить ток включения лампы накаливания можно понизить начальное напряжение и постепенно повысить его до номинальной величины. Для этого используют устройство плавного включения ламп накаливания.

Прибор включается в разрыв питающего провода между выключателем и светильником. Когда вы подаете напряжение, в первый момент времени оно близко к нулю, схема плавного розжига постепенно повышает его. Обычно они собраны по схеме фазоимпульсного регулятора на тиристорах, симисторе или полевых транзисторах.

Основной характеристикой блока защиты является допустимая мощность подключенной нагрузки. Обычно лежит в пределах 100–1500 Вт.

Сборник принципиальных схем

Вначале идут общеизвестные схемы из Интернета, а далее несколько собранных лично и прекрасно работающих. Первая схема простейшая – при подаче питания диод постепенно увеличивает яркость (открывается транзистор по мере заряда конденсатора):

Делал вот такую схему плавного включения и выключения светодиодов, резистором R7 подбирается нужный ток через диод. А если вместо кнопки подключить вот этот прерыватель, то схемка сама будет разжигаться и затухать, только резистором R3 нужно установить нужный интервал времени.

Вот ещё две схемы плавного розжига и затухания, которые также лично паял:

Все эти конструкции относятся не к сетевым (от 220 В), а обычным низковольтным светодиодным индикаторам. Промышленные LED лампы с их неизвестными драйверами, чаще всего в разных плавных контроллерах работают непредсказуемо (или мигают, или включаются всё-таки резко). Так что управлять нужно не драйверами, а непосредственно светодиодами. Схемы предоставил senya70.

Обсудить статью ПЛАВНОЕ ВКЛЮЧЕНИЕ / ВЫКЛЮЧЕНИЕ СВЕТОДИОДОВ

Какие светодиоды подключают к 12 вольтам?

Если коротко ответить на вопрос, вынесенный в качестве подзаголовка, то ответ будет звучать так: никакие! Неспециалисту такой ответ покажется парадоксальным, ведь в продаже имеются светодиоды, которые, как заявляют продавцы, рассчитаны на питание от источника 12 вольт.

Возьмемся утверждать, что на конкретное напряжение могут быть рассчитаны только изделия на основе светодиодов. Говорить о конкретном рабочем напряжении LED не корректно. Это связанно с физическими процессами, протекающими в нем при испускании света.

Главными характеристиками этих процессов являются рабочий ток и максимально допустимый ток прибора. В справочниках и даташитах указывают напряжения на светодиодах при протекании рабочего тока. Эти величины используют для расчетов LED конструкций, а не для выбора источника питания.

Кстати, напряжение в рабочем режиме лежит всего лишь в пределах от 1.5 В до 3.5 В. Величина зависит, в основном, от цвета испускаемого LED. Меньшие напряжения падают на красных светодиодах, большие значения относятся к сверхъярким. Имеющиеся в продаже светоизлучающие диоды на 12 вольт не являются единичными приборами.

Двенадцативольтовые LED это матрицы, состоящие из нескольких светоизлучающих диодов. Матрицы представляют собой светодиодные сборки, собранные из цепочек последовательно подключенных приборов.

В каждой матрице имеется несколько цепочек, которые подключены параллельно между собой. Когда говорят, что светодиод рассчитан на двенадцать вольт, то подразумевают, что падение напряжения на последовательной цепочке из них при протекании рабочего тока составляет примерно 12 В.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector