Планетарный редуктор
Содержание:
- Общее описание [ править | править код ]
- Ремонт редуктора своими руками
- Советы по подбору планетарного редуктора
- Планетарный редуктор и планетарная передача — теория
- Назначение механизма
- Устройство и принцип работы
- УСТРОЙСТВО ПЛАНЕТАРНОГО РЕДУКТОРА
- Технические характеристики
- Аналитическое определение передаточного отношения планетарного механизма
- 10.1 Определение передаточного числа планетарного редукторов с двумя внешними зацеплениями
- Планетарные редукторы в машиностроении
- Общее описание [ править | править код ]
- Обслуживание и ремонт
- Какие виды редукторов бывают
- Устройство и принцип работы
Общее описание [ править | править код ]
Конструкция
Механической основой планетарного редуктора может быть планетарная передача любой формы и состава. Принципиальная возможность работы планетарной передачи в режиме редуктора не зависит от формата распределения функций между тремя её основными звеньями (солнцем, водилом и эпициклом): любое звено может быть выбрано конструкторами как ведущее, и любое как ведомое. Но при этом, наличие у планетарной передачи двух степеней свобод требует снятия одной степени свободы для её работы в качестве редуктора; эта задача решается посредством блокировки третьего звена на корпус редуктора, а само звено получает название «опорное звено».
Уникальные особенности
В контексте сравнения планетарной передачи с любыми другими типами зубчатых передач под использование их в качестве редуктора, таковыми особенностями являются: сходность входящего и исходящего потока мощности (например, валов) даже на однорядной планетарной передаче; возможность выбора из шести передаточных отношений даже на простой трёхзвенной планетарной передаче; две степени свободы любой планетарной передачи; возможность получения больших передаточных отношений в условиях ограниченного поперечного габарита.
Ремонт редуктора своими руками
Ремонт редуктора своими руками является весьма непростой задачей. Так, данный механизм очень непростой и состоит из множества частей. При ремонте своими руками часто можно даже при разборке не ведая, что внутри просто растерять целую кучу маленьких деталей, например, иголки моментально рассыпаются и теряются. Ремонт планетарного редуктора лучше всего оставить профессионалам.
Как и все редукторы, он может быть как одноступенчатым, так и многоступенчатым. Если Вы собираетесь приобрести механизм данного типа, то лучше всего покупать его у проверенных производителей, так как ремонт своими руками очень затруднен, а если он будет часто выходить из строя, то денег на него будет уходить много. В данной статье мы попытались собрать общую информацию по устройствам планетарного типа использующихся для производства автомобилей. Также нужно сказать, что данный вид устройства очень интенсивно внедряется во многие сферы и отрасли благодаря своим очень весомым преимуществам.
Советы по подбору планетарного редуктора
Главное в этом деле — правильно произвести расчет основных параметров нагрузки и существующих условий эксплуатации этого устройства.
Выбор производиться в зависимости от:
- типа передачи;
- максимально допустимых осевых и консольных нагрузок;
- типоразмера этого устройства;
- диапазона температур, в которых редуктор может использоваться длительный период и не терять при этом своих полезных качеств и свойств.
Процедура механизации производственной и другой деятельности существенно повысила поставленные задачи. Довольно большое распространение получили механизмы, предназначенные для передачи вращения и распределения создаваемого усилия. Существует довольно большое количество различных редукторов, все они характеризуются своими определенными эксплуатационными характеристиками. Примером можно назвать планетарный редуктор, устройство которого имеет довольно большое количество различных особенностей. Рассмотрим подобный механизм подробнее.
Планетарный редуктор и планетарная передача — теория
Рассмотрен принцип действия планетарной передачи, указаны преимущества и недостатки применения планетарных редукторов. Приведена схема планетарной передачи и расчет передаточного отношения редуктора.
Планетарный редуктор и планетарная передача
Зубчатая передача |
Зубчатая передача
Устройство планетарного механизма основано на вращении тел зубчатой передачи, которые непосредственно взаимодействуют с главным двигателем. Именно такое соединение и служит для передачи силы от редуктора до других механизмов с изменением скорости их вращения. Таким образом происходит передача крутящего момента от двигателя на колеса через основную ось, главную шестерню и сателлиты.
Вообще устройство зубчатой передачи достаточно простое и понятное. Вот, что входит в конструкцию обычной передачи.
Для соединения с главной передачей имеются две зубчатые шестерни, таким образом происходит зацепление. При движении происходит передача скорости вращения с главной шестерни на ведомую за счет зацепов. Наименьшее колесо в конструкции называется шестерней, а наибольшее будет главным и ведомым колесом.
Планетарный механизм
Схема планетарной передачи |
Редукторы с зубчатой передачей, колеса которых имеют движущиеся оси, называются планетарными. Внутри расположены зубчатые колеса, перемещающиеся на своих, геометрических осях. Такие шестерни получили название сателлиты, потому что вся конструкция очень похожа на солнечную систему. Главные шестерни называются центральными колесами. Сателлиты крепятся на своих осях и вращаются вокруг главной передачи при помощи водила, которое движется так же, как и центральное колесо, вокруг главной оси. Центральное колесо остается неподвижным, а другие шестерни можно заблокировать или разблокировать полностью.
Если центральное колесо неподвижно, то второе постоянно движется. Ведущим здесь является вал подвижного колеса, а ведомым-водила. Если разблокировать все зубчатые колеса вместе с ведомым, то такая передача будет дифференциальной. Выделяют два основных и ведущих звена и одно ведомое.
При подробном рассмотрении простейшей планетарной передачи мы видим: ведущее колесо или водило, ведомое с тремя сателлитами, вращающимися вокруг центральной оси и центральное, неподвижное колесо.
Передаточное отношение
Чтобы рассчитать передаточное отношение редуктора, необходимо заметить определенное количество неподвижных звеньев(1,2,3 и Н) и условно задать им поступательное вращение со скоростью wH, равное скорости вращения водила, но с обратным знаком. Скорость зацепления зубчатых колес не изменяется. Таким образом скорость + wH +(- wH)=0, то есть водило будет остановлено. Если водило неподвижно, тогда планетарная передача превращается в зубчатую, где все колеса неподвижны. Сателлиты не учитываются. Их вращение будет положительным при одинаковом вращении шестерен, а отрицательным при противоположном вращении:i=(? 1 -? H)/(? 3 -? H)=-(z 3 /z 1), где z 1 и z. Если колесо 3 закреплено неподвижно, то угловая скорость водила Н = 1 /[1+(z 3 /z 1)], а передаточное отношение i =1+z 3 /z 1.
Как обычно, для работы редуктора с одноступенчатой передачей при больших нагрузках становится мало, поэтому стали изготавливать двух и трех ступенчатые редукторы, а иногда и четырех ступенчатые. Чаще всего применяется двухступенчатая передача.
Двухступенчатая планетарная передача.
Схема двухступенчатой планетарной передачи |
Для других редукторов передаточное отношение высчитывается таким же способом. Для двухступенчатого редуктора, где центральное колесо 1—ведущее, водило Н2 — ведомое, центральные колеса 3 и 4 закреплены в корпусе, передаточное отношение i=1+z 2 z 3 /z 1 z 4.
При всех достоинствах планетарного редуктора, нужно знать, что при сильном вращении шестерни, КПД всего механизма сильно ухудшается.
Нагрузка от центрального колёса водила восприниматься всеми шестеренками (1-6) одинаково, при этом их размеры значительно меньше, чем у обычной передачи. Следовательно, главными преимуществами планетарной передачи являются большая скорость вращения, небольшой вес и компактность. Дифференциальные передачи используются в автомобиле для разложения движения, а так же в различных станках. К минусам такой передачи относится ее трудоемкое изготовление и сложная сборка на предприятии. Такие редукторы благодаря своим преимуществам находят свое применение во многих отраслях производства: в машиностроении, приборах, станкостроении, в транспорте.
Использован материал из книги «Детали машин» Гузенков П.Г.
Так же по теме предлагаем статью «Планетарный редуктор» с примером расчета передаточного отношения и анимированными схемами ступеней планетарного редуктора.
Назначение механизма
Редуктором называют узел, который изменяет мощность. Это может быть давление газа и жидкости в газовых баллонах, трубопроводах и на распределительных подстанциях. Механические редукторы изменяют число оборотов и угловую скорость.
Для чего нужен в механизме и машине зубчатый передаточный механизм. Он снижает угловую скорость двигателя, увеличивая при этом в столько же раз крутящий момент – силу, с которой может воздействовать выходной вал на исполняющий механизм.
Функции узла, уменьшить скорость вращения в десятки раз и настолько же увеличить крутящий момент – усилие, с которым машина будет совершать работу.
Устройство и принцип работы
Устройство состоит из следующих элементов:
Основные элементы представлены зубчатыми и червячными парами.
Для установки и фиксации основных деталей проводится установка центрирующих подшипников.
Для смазывания трущихся деталей корпус заполняется специальным маслом
Исключить вероятность его вытекания можно за счет уплотнений.
Сальники также являются важной частью конструкции.
Корпус состоит из двух составных элементов, за счет которых есть возможность разобрать конструкция при обслуживании или ремонте.. Схема классического устройства выглядит следующим образом:
Схема классического устройства выглядит следующим образом:
- В качестве источника вращения устанавливается мотор.
- Другая часть представлена шестерней планетарного типа. Внутри расположены другие детали, крепление стакана редуктора к мотору проводится за счет фиксирующих элементов.
- Далее идет вал с подшипником.
Защита конструкции обеспечивается за счет крышки редуктора. Его фиксация проводится за счет болтов.
Принцип действия агрегата во многом зависит от кинематической схемы привода. Расчет передаточного отношения проводится при применении специальных формул, которые можно встретить в технической литературе.
УСТРОЙСТВО ПЛАНЕТАРНОГО РЕДУКТОРА
Основными частями планетарного редуктора, как правило, являются такие элементы, как солнечная шестеренка, которая, как сказано выше, расположена в центре редуктора. Так же к основным элементам относятся, водило. Эта деталь редуктора предназначена для прочной фиксации осей остальных шестерней, или как их еще называют сателлитов. Сателлиты представляют собой одинакового размера шестеренки, которые располагаются вокруг основной шестерни
И наконец, еще одной важной деталью планетарного редуктора является шестерня, которая называется кольцевой. Эта шестеренка имеет вид зубчатого вида колеса, которое распложено по краю всех частей редуктора, данная часть имеет сцепку с сателлитами
Принцип работы планетарного редуктора выглядит следующим образом.
Один из элементов данного устройства всегда остается неподвижным, в данном случае это кольцевая деталь. Ведущей деталью в планетарном редукторе является солнечная шестерня, а ведомыми, стало быть, сателлиты. Как правило, наиболее часто применение планетарного вида редукторов используется в такой отрасли как машиностроение. Однако нередко его еще применяют при изготовлении различного рода станков для резки металла. Довольно часто используется сразу несколько планетарных редукторов, как правило, этими редукторами оснащается автоматическая коробка передач.
Технические характеристики
Технические характеристики мотор-редуктора составляют комплекс из отдельных параметров механической части и электродвигателя. Важнейшей характеристикой становятся режим работы механизма. В зарубежной литературе используется подобный параметр, называемый сервис-фактором. Он определяет частоту и уровень механических нагрузок и задается на основе характеристик технологического процесса. Принцип действия редуктора и его передаточное число, позволяют подобрать модель с требуемым типом двигателя для конкретных условий работы. Схема расположения валов позволяет наилучшим образом расположить приводной модуль на оборудовании. Тип выходного вала обеспечивает простоту установки. Важным параметром становится способ крепления мотор-редуктора к технологическому устройству. Встречаются модели с установкой на лапы, фланцевого и комбинированного исполнения.
С целью определения конкретных скоростей выходного вала используют номинальную скорость вращения электромотора. В зависимости от нее, один и тот же редуктор будет обеспечивать разные характеристики. Мощность двигателя определяет нагрузки технологического механизма.
Аналитическое определение передаточного отношения планетарного механизма
Рассмотрим порядок
получения формулы для расчета
передаточного отношения планетарного
механизма через известные числа зубьев
его колес на примере редуктора Джемса
(рис.1) или (рис.2,а).
Входным звеном в
этом механизме является солнечное
колесо 1, а выходным — водило Н.
Тогда искомым
является выражение
==?,
(2.1)
где обозначение
читается как “передаточное отношение
от 1-го колеса к водилу Н при неподвижном
3-м колесе”.
Для определения
передаточного отношения планетарного
механизма используется метод обращения
движения или метод остановки (“фиксации”)
водила.
Для реализации
этого метода всем звеньям механизма
сообщается дополнительное воображаемое
вращательное движение вокруг центральной
оси О1Он
с угловой скоростью (- н).
Тогда получим новый — обращенный
механизм, который будет примечателен
тем, что его звено Н , бывшее ранее
водилом, станет неподвижным. Следовательно,
неподвижным станет и центр О2,
т.е. обращенный механизм будет представлять
собой обычную зубчатую передачу с
неподвижными осями вращения колес. При
этом угловые скорости звеньев нового
обращенного механизма будут равны:
— солнечного колеса
1 — 1
=1-н;
— корончатого
колеса 3 — 3=0-н=-н;
— водила Н —
н=н-н=0.
Таким образом,
при остановленном водиле ведомым звеном
становится корончатое колесо 3, и
передаточное отношение обращенного
механизма будет равно
=1-(2.2)
Следовательно,
искомое передаточное отношение
планетарного механизма
будет равно:
=1-(2.3)
где U(н)13—
является передаточным отношением
обычной зубчатой передачи с неподвижными
осями, для которой по формуле Виллиса:
(2.4)
Тогда, подставляя
полученное значение, имеем для
планетарного механизма редуктора
Джемсa:
=1+.
(2.5)
Аналогично можно
вывести формулы для определения
передаточных отношений механизмов,
изображенных на рис.2.б, рис.3, а и б:
— для схемы на
рис.2.б:
=1+
; (2.6)
— для схемы на
рис.3.а:
;
(2.7)
— для схемы на
рис.3.б:
=
. (2.8)
При назначении
чисел зубьев колес планетарной передачинеобходимо
учитывать ряд требований и условий,
важнейшие из которых следующие.
1. Числа зубьев
Z1,
Z2…
должны быть целыми числами.
2. Сочетание чисел
зубьев колес должно обеспечивать
требуемое передаточное отношение Uпл
с допустимой
точностью ±3 % .
3. При отсутствии
специальных требований желательно
использовать в передаче нулевые колеса.
Это ограничение записывают в форме
отсутствия подреза зубьев: для колес
с внешними зубьями, нарезанными
стандартным инструментом, Zi
≥ Zmin=17;
для колес с внутренними зубьями – Zi
≥ Zmin=85.
4. Оси центральных
колес и водила Н планетарной передачи
должны лежать на одной прямой для
обеспечения движения точек по соосным
окружностям (условие
соосности ).
5. При расположении
сателлитов в одной плоскости, т. е. без
смещения в осевом направлении, соседние
сателлиты должны быть расположены так,
чтобы между окружностями вершин
обеспечивался гарантированный зазор
(условие
соседства)
:
(
Z1+Z2)sin
>Z2+2,
(3.1)
где k
– число сателлитов.
6. Сборка нескольких
сателлитов должна осуществляться без
натягов так, чтобы зубья всех сателлитов
одновременно вошли во впадины солнечного
и корончатого колес:
,
(3.2)
где Z1—
число зубьев центрального колеса,
k-число
сателлитов, р — число оборотов водила,
Сo-целое
число.
Рассмотрим порядок
синтеза планетарных механизмов,
представленных на рис. 2 и рис. 3.
10.1 Определение передаточного числа планетарного редукторов с двумя внешними зацеплениями
Рисунок
31
1 – неподвижное звено;
2, 3 – блок сателлитов;
4 – подвижное колесо;
Н – водило;
А5— кинематическая
пара пятого класса, низшая;
D5— кинематическая пара пятого класса,
низшая;
N5— кинематическая пара пятого класса,
низшая;
С4— кинематическая
пара четвертого класса, высшая;
В4— кинематическая
пара четвертого класса, высшая;
10.1.1 Определяем степень
подвижности
(53)
гдеn=3
р5=3
р4=2
Если степень подвижности
равна единицы, то данный редуктор
является планетарным.
10.1.2 Определяем
передаточное отношение от подвижного
колеса к водилу
Верхний индекс
показывает, какое звено неподвижно.
Мысленно остановить водило, и заменить
неподвижное колесо подвижным. Теперь
следует определять от подвижного колеса
к тому колесу, которое было неподвижным.
Полученный результат нужно вычесть из
единицы.
(54)
где m–
число внешних зацеплений;
UH41– передаточное отношение от 4 к 1 колесу
(55)
где U4.3– передаточное отношение от 4 к 3 колесу
U21– передаточное отношение от 2 к 1 колесу
m=2
(56)
где Z3– число зубьев третьего сателлита;
Z4– число зубьев подвижного колеса 4;
Z3=19
Z4=45
(57)
где Z1– число зубьев неподвижного колеса 1;
Z4– число зубьев подвижного колеса 4;
Z1=47
Z2=18
10.1.3
Определяем передаточное отношение от
водила к подвижному колесу
Искомое передаточное
отношение обратное передаточному
отношению от подвижного колеса к водилу.
Следовательно, нужно 1 поделить на
передаточное отношение от подвижного
колеса к водилу.
(58)
10.2
Определение передаточного числа
планетарного редуктора с одним внешними
и одним внутренним зацеплениями
Рисунок
32
1 – неподвижное звено;
2, 3 – блок сотилитов;
4 – подвижное колесо;
Н – водило;
А5— кинематическая
пара пятого класса, низшая;
D5— кинематическая пара пятого класса,
низшая;
N5— кинематическая пара пятого класса,
низшая;
С4— кинематическая
пара пятого класса, высшая;
В4— кинематическая
пара пятого класса, высшая;
10.2.1 Определяем степень
подвижности
гдеn=3
р5=3
р4=2
10.2.2 Определяем
передаточное отношение от подвижного
колеса к водилу
(59)
где m–
число внешних зацеплений;
UH41– передаточное отношение от 4 к 1 колесу
(60)
где U4.3– передаточное отношение от 4 к 3 колесу
U21– передаточное отношение от 2 к 1 колесу
m=1
(61)
где Z3– число зубьев третьего сателлита;
Z4– число зубьев подвижного колеса 4;
Z3=19
Z4=45
(62)
где Z1– число зубьев неподвижного колеса 1;
Z4– число зубьев подвижного колеса 4;
Z1=47
Z2=18
10.2.2
Определяем передаточное отношение от
водила к подвижному колесу
(63)
10.3 Определение
передаточного числа планетарного
редукторов с двумя внутренним зацеплениями
Рисунок
33
1 – неподвижное звено;
2, 3 – блок сателлитов;
4 – подвижное колесо;
Н – водило;
А5— кинематическая
пара пятого класса, низшая;
D5— кинематическая пара пятого класса,
низшая;
N5— кинематическая пара пятого класса,
низшая;
С4— кинематическая
пара четвертого класса, высшая;
В4— кинематическая
пара четвертого класса, высшая;
10.3.1 Определяем степень
подвижности
гдеn=3
р5=3
р4=2
10.3.2 Определяем
передаточное отношение от подвижного
колеса к водилу
(64)
где m–
число внешних зацеплений;
UH41– передаточное отношение от 4 к 1 колесу
(65)
где U4.3– передаточное отношение от 4 к 3 колесу
U21– передаточное отношение от 2 к 1 колесу
m=0
(66)
где Z3– число зубьев третьего сателлита;
Z4– число зубьев подвижного колеса 4;
Z3=18
Z4=59
(67)
где Z1– число зубьев неподвижного колеса 1;
Z4– число зубьев подвижного колеса 4;
Z1=60
Z2=19
10.3.3
Определяем передаточное отношение от
водила к подвижному колесу
(68)
10.4
Определение передаточного числа
планетарного редукторов с внутренним
зацеплением и паразитным колесом
1 – неподвижное звено;
2 – сателлит;
4 – подвижное колесо;
Н – водило;
А5— кинематическая
пара пятого класса, низшая;
D5— кинематическая пара пятого класса,
низшая;
N5— кинематическая пара пятого класса,
низшая;
С4— кинематическая
пара четвертого класса, высшая;
В4— кинематическая
пара четвертого класса, высшая;
10.4.1 Определяем степень
подвижности
гдеn=3
р5=3
р4=2
10.4.2 Определяем
передаточное отношение от подвижного
колеса к водилу
(69)
где m–
число внешних зацеплений;
UH41– передаточное отношение от 4 к 1 колесу
(70)
где U4.2– передаточное отношение от 4 ко 2 колесу
U21– передаточное отношение от 2 к 1 колесу
m=1
(71)
где Z2– число зубьев сателлита;
Z4– число зубьев подвижного колеса 4;
Z2=20
Z4=25
(72)
где Z1– число зубьев неподвижного колеса 1;
Z4– число зубьев подвижного колеса 4;
Z1=65
Z2=20
10.4.3
Определяем передаточное отношение от
водила к подвижному колесу
(73)
Планетарные редукторы в машиностроении
Широкое распространение редуктора, которые имеют устройство данного типа получили в ведущих мостах автомобилей и в автоматических коробках переключения передач. Колесный редуктор можно встретить в мостах таких автомобилей, как: МАЗ, Икарус, в некоторых троллейбусах, тракторах Т-150К, К-700. Этот колесный редуктор в мостах передает крутящий момент к ступицам колес от полуосей. Также они распространены в передаче бортового типа. Такое применение в бортовой передаче позволило существенно уменьшить как расчетный, так и практический диаметр основной передачи. Уменьшение диаметра отразилось повышенным просветом автомобиля и как следствие более высокой проходимостью. Использование планетарных коробок переключения передач набирает все большую популярность. Передаточное отношение устройства будет вытекать из расчета отношения числа зубьев на центральной шестерни к числу зубьев на коронной шестерне. Интересным моментом является расторможение коронной шестерни в коробке. В этом случае передаточное число равняется 1.
Общее описание [ править | править код ]
Конструкция
Механической основой планетарного редуктора может быть планетарная передача любой формы и состава. Принципиальная возможность работы планетарной передачи в режиме редуктора не зависит от формата распределения функций между тремя её основными звеньями (солнцем, водилом и эпициклом): любое звено может быть выбрано конструкторами как ведущее, и любое как ведомое. Но при этом, наличие у планетарной передачи двух степеней свобод требует снятия одной степени свободы для её работы в качестве редуктора; эта задача решается посредством блокировки третьего звена на корпус редуктора, а само звено получает название «опорное звено».
Уникальные особенности
В контексте сравнения планетарной передачи с любыми другими типами зубчатых передач под использование их в качестве редуктора, таковыми особенностями являются: соосность входящего и исходящего потока мощности (например, валов) даже на однорядной планетарной передаче; возможность выбора из шести передаточных отношений даже на простой трёхзвенной планетарной передаче; две степени свободы любой планетарной передачи; возможность получения больших передаточных отношений в условиях ограниченного поперечного габарита.
Обслуживание и ремонт
Сложность рассматриваемого механизма определяет то, что возникает необходимость в своевременном обслуживании и проведении ремонта
Для начала уделим внимание тому, каким образом проводится расчет планетарного редуктора. Среди особенностей этого процесса отметим следующие моменты:. Определяется требуемое число передаточных ступеней
Для этого применяются специальные формулы. Определяется число зубьев и расчет сателлитов. Зубчатые колеса могут иметь самое различное число зубьев
Определяется требуемое число передаточных ступеней. Для этого применяются специальные формулы. Определяется число зубьев и расчет сателлитов. Зубчатые колеса могут иметь самое различное число зубьев
В рассматриваемом случае их число довольно много, что является определяющим фактором
Уделяется внимание выбору наиболее подходящего материала, так как от его свойств зависят и основные эксплуатационные характеристики устройства. Определяется показатель межосевого расстояния
Делается проверочный расчет. Он позволяет исключить вероятность допущения ошибок на первоначальном этапе проектирования. Выбираются подшипники
Они предназначены для обеспечения плавного вращения основных элементов
При выборе подшипника уделяется внимание тому, на какую нагрузку они рассчитаны. Кроме этого, не рекомендуется использовать этот элемент без смазки, так как это приводит к существенному износу
Определяется оптимальная толщина колеса. Слишком большой показатель становится причиной увеличения веса конструкции, а также расходов. Проводится вычисление того, где именно должны быть расположены оси шестерен. Это проводится с учетом размеров зубчатых колес и некоторых других моментов. Как правило, в качестве основы применяется чертеж, который можно скачать из интернета. Самостоятельно разработать проект по изготовления планетарного редуктора достаточно сложно, так как нужно обладать навыками инженера для проведения соответствующих расчетов и проектирования.
Изготовить самостоятельно рассматриваемую конструкцию достаточно сложно, как и провести ремонт планетарных редукторов. Среди особенностей этой процедуры отметим следующее:
- Процедура достаточно сложна, так как механизм состоит из большого количества различных элементов. Примером можно назвать то, что сразу после разбора все иголки могут высыпаться практически моментально.
- Многие специалисты рекомендуют доверять рассматриваемую работу исключительно профессионалам, так как допущенные ошибки становятся причиной быстрого износа и выхода из строя механизма.
- Ремонт зачастую предусматривает замену шестерен, которые со временем изнашиваются. Примером можно истирание зубьев, изменение размеров посадочного гнезда и многие другие дефекты. Самостоятельно изготовить подобные изделия практически невозможно, так как для этого требуется специальное оборудование.
Чаще всего обслуживание предусматривает добавление масла. Смазка планетарного редуктора позволяет существенно продлить срок службы конструкции, так как соприкосновение и трение металла становится причиной его истирания. Рекомендуется смазывать механизм периодически, так как масло выступает еще в качестве охлаждения. В продаже встречаются специальные смазывающие вещества, которые характеризуются определенными эксплуатационными качествами.
Сегодня ремонтом редукторов занимаются компании, которые специализируются на предоставлении соответствующих услуг. Признаком того, что механизм начинает выходить из строя становится появление сильного шума, вибрации, рывков, нагрев и многое другое. Со временем процесс износа существенно ускоряется, так как металл, находящийся в масле попадает в зацепление шестерен. В большинстве случаев ремонт предусматривает замену всех элементов на новые.
В заключение отметим, что планетарный редуктор характеризуется весьма привлекательными свойствами. Примером можно назвать отсутствие большого количества крепежных элементов, а также равномерное распространение нагрузки. Как ранее было отмечено, редуктор применяется при создании различных узлов транспортных средств.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Какие виды редукторов бывают
По классификации редукторов по типу передачи они могут разделяться на цилиндрические, конические, червячные, планетарные, волновые, спироидные, а также комбинированные.
Вид червячного редуктора
В цилиндрических редукторах валы редуктора расположены параллельно друг от друга, в конических редукторах валы пересекаются между собой, в червячных они перекрещиваются. Также редукторы могут быть одноступенчатыми, то есть иметь два вала, двухступенчатые – три вала и трехступенчатые.
Планетарный редуктор или как его ещё называют – дифференциальный как один из перечисленных видов имеет свое название от вида передачи – планетарной, которая как раз и передает крутящийся момент. Название произошло по прообразу планет, вращающихся вокруг солнца (центральной шестерни). Называются планетарные шестерни соответственно: солнце, (шестерня в центре), коронная шестерня, которая находится на краю редуктора, сателлиты, это три маленькие шестерни – планеты, которые находятся между этими двумя шестернями. Эти три шестерни соединяются при помощи оси специальной шестерни – водила.
Планетарный редуктор в разрезе
Планетарный механизм работает следующим образом: от главной передачи редуктора (электродвигателя) вращение посредством полуосей попадает на центральную солнечную шестерню, которая, вращаясь, передает вращающийся момент на сателлиты. Сателлиты, в свою очередь, через оси, которые закреплены на водиле, передают вращение на водило и на коронную шестерню. Водило передает вращение на балку моста. Коронная шестерня передает вращение на ступицу
При этом для расчета крутящего момента принимаем во внимание, что во сколько раз отношение между количеством зубьев, которое имеет солнечная шестерня, меньше, чем количество зубьев, которые имеет коронная шестерня, во столько увеличивается крутящийся момент этого редуктора
Устройство и принцип работы
Рассматриваемый механизм представлен классическим сочетанием шестерен с различным диаметром, которые обеспечивают передачу вращения с изменением числа оборотов и передаваемого усилия. Особенности механизма определяют возможность применения в самых различных отраслях. Обеспечить работу можно только в случае присоединения вращающего вала к ведомой части.
Рассматривая чертеж классического устройства, следует отметить, что оно состоит из следующих элементов:
Основные элементы представлены зубчатыми и червячными парами.
Для установки и фиксации основных деталей проводится установка центрирующих подшипников.
Для смазывания трущихся деталей корпус заполняется специальным маслом
Исключить вероятность его вытекания можно за счет уплотнений.
Сальники также являются важной частью конструкции.
Корпус состоит из двух составных элементов, за счет которых есть возможность разобрать конструкция при обслуживании или ремонте.. Схема классического устройства выглядит следующим образом:
Схема классического устройства выглядит следующим образом:
- В качестве источника вращения устанавливается мотор.
- Другая часть представлена шестерней планетарного типа. Внутри расположены другие детали, крепление стакана редуктора к мотору проводится за счет фиксирующих элементов.
- Далее идет вал с подшипником.
Защита конструкции обеспечивается за счет крышки редуктора. Его фиксация проводится за счет болтов. В целом можно сказать, что устройство достаточно сложное, поэтому провести его ремонт и обслуживание не всегда просто.
Принцип действия агрегата во многом зависит от кинематической схемы привода. Расчет передаточного отношения проводится при применении специальных формул, которые можно встретить в технической литературе.
Основная часть конструкции состоит из следующих деталей:
- Коронной шестерни.
- Планетарная или сателлиты.
- Водило и солнечная шестерня.
Принцип действия рассчитывается следующим образом:
- Солнечная шестерня расположена в центральной части конструкции. Зачастую именно ей передается основное вращение, для чего элемент имеет посадочное отверстие под вал.
- Центральный элемент постоянно находится в зацеплении с другими подобными шестернями, оси которых расположены по окружности.
- Сателлиты находятся в зацеплении с коронной шестерней, которая представлена зубчатым колесом большого диаметра с внутренним расположением основных деталей.
- Водило требуется для жесткой фиксации всех деталей относительно друг друга.
Стоит учитывать, что для работы механизма одна из частей должна быть зафиксирована относительно других. В зависимости от выбора ведомого или ведущего элемента зависит показатель передаточного числа. Рассчитать число достаточно сложно, от этого показателя также зависит удельная мощность.
Конструктивные особенности рассматриваемого механизма определили то, что он может применяться для достижения самых различных целей.