Дифференциалы кпп, сателлиты, подшипники
Содержание:
- Ремонт редуктора своими руками
- Планетарный зубчатый механизм
- Сфера применения планетарных МКПП
- Общие сведения
- 3D печать
- Устройство агрегата
- Устройство и принцип работы
- Из чего состоит и как работает планетарная втулка
- Планетарный механизм: назначение и устройство
- Планетарная коробка — передача
- История
- Советы по подбору планетарного редуктора
- Применение
- Управляющие элементы планетарной передачи
Ремонт редуктора своими руками
Ремонт редуктора своими руками является весьма непростой задачей. Так, данный механизм очень непростой и состоит из множества частей. При ремонте своими руками часто можно даже при разборке не ведая, что внутри просто растерять целую кучу маленьких деталей, например, иголки моментально рассыпаются и теряются. Ремонт планетарного редуктора лучше всего оставить профессионалам.
Как и все редукторы, он может быть как одноступенчатым, так и многоступенчатым. Если Вы собираетесь приобрести механизм данного типа, то лучше всего покупать его у проверенных производителей, так как ремонт своими руками очень затруднен, а если он будет часто выходить из строя, то денег на него будет уходить много. В данной статье мы попытались собрать общую информацию по устройствам планетарного типа использующихся для производства автомобилей. Также нужно сказать, что данный вид устройства очень интенсивно внедряется во многие сферы и отрасли благодаря своим очень весомым преимуществам.
Планетарный зубчатый механизм
Схемы планетарных передач. |
Планетарные зубчатые механизмы используют также в дифференциалах и в колесных редукторах главных передач.
Планетарные зубчатые механизмы могут обладать одной или двумя ( или больше) степенями подвижности.
Планетарные зубчатые механизмы, обладающие двумя или несколькими степенями подвижности, называются дифференциальными меха ни з — м а м и или просто дифференциалами.
Сателлитные зубчатые механизмы.| Конический зубчатый ди4 ференциал. |
Планетарные зубчатые механизмы представляют собой дифференциальные механизмы с остановленным центральным зубчатым колесом.
Кинематическая схема планетарного зубчатого механизма с тремя центральными колесами. |
Планетарные зубчатые механизмы с тремя центральными колесами дают возможность в исполнительных механизмах иметь два рабочих органа, жестко связанных с двумя центральными колесами или с одним центральным колесом и сателлитом, в то время как третье центральное колесо является неподвижным; при этом ведущим звеном является водило.
Планетарные зубчатые механизмы широко распространены в машиностроении и приборостроении.
Планетарный зубчатый механизм с двумя степенями свободы ( минимально) называют дифференциальным механизмом. Только при двух заданных угловых скоростях его звеньев можно определить угловые скорости остальных. Следовательно, дифференциал не имеет определенного передаточного отношения.
Планетарные зубчатые механизмы делятся на простые и дифференциальные. Планетарный механизм с жесткими звеньями называется простым, если он имеет одну степень свободы, и дифференциальным, если его число степеней свободы больше единицы.
Планетарным, зубчатым механизмом называется механизм, имеющий зубчатые колеса с движущимися геометрическими осями. Такие колеса называются планетарными или сателлитами.
Различают днфре-ренцнальные и планетарные зубчатые механизмы.
Известно, что двухступенчатые планетарные зубчатые механизмы с внутренним зацеплением имеют преимущество перед двухступенчатыми планетарными механизмами с внешним зацеплением в том, что при одних и тех же кинематических характеристиках они имеют более высокий КПД.
Подбор чисел зубьев планетарных зубчатых механизмов по заданному передаточному отношению требует выполнения большого числа математических операций. Поэтому такую задачу практически решают с помощью ЭВМ. Для этого используется программа разложения заданного ир на сомножители и последующего определения z с учетом ограничений и наименьших габаритов. Иногда в программу вводятся требуемые uPM / N; z / mm; z / max, k ограничения и путем перебора определяют комбинации чисел зубьев, из которых выбирается нужное сочетание z, z2, z3, z4 при минимальных габаритах, сохранении заданного соотношения передаточного отношения по ступеням.
Сфера применения планетарных МКПП
На заре автомобилестроения планетарные трансмиссии присутствовали и в механических коробках – например, в знаменитой модели Ford T. Передачи переключались тремя педалями, педаль газа перенесли на подрулевой переключатель. Первая передача включалась левой педалью, вторая – центральной, задняя – правой. В 1928 году модель сняли с конвейера, и эра планетарных МКПП ушла в небытиё.
В 30-е годы появились первые полуавтоматические коробки передач планетарного типа, которые впоследствии были вытеснены полностью автоматическими.
В полуавтоматах функции сцепления выполняла гидромуфта. В автоматических трансмиссиях – гидротрансформатор.
Впрочем, планетарные МКПП всё ещё в ходу – их устанавливают в гусеничную технику (трактора, экскаваторы), в том числе военного назначения (танки, транспортёры, тягачи). Используется планетарный механизм в металлорежущих станках, и даже в турбинах авиационных двигателей, в качестве редуктора.
Весьма популярны планетарные коробки передач в велосипедных трансмиссиях. Они отличаются долговечностью, малым весом и простотой эксплуатации, являясь, по существу, необслуживаемыми. Однако они существенно увеличивают стоимость двухколёсной техники, поэтому в чисто спортивных моделях не используются, во многом – из-за увеличения массы ТС на 1,5-2 кг. и плохой ремонтопригодностью, если сравнивать с устройствами переключения передач параллелограммного типа.
Общие сведения
Планетарная передача и планетарный механизм так названы по аналогии с нашей Солнечной системой, которую условно можно представить так: в центре есть «солнце» (центральное колесо в механизме). Вокруг него движутся «планеты» (маленькие колесики или сателлиты). Все эти детали в планетарном механизме имеют наружные зубья. Условная солнечная система по ее диаметру имеет границу. Роль ее в планетарном механизме выполняет большое колесо или эпицикл. На нем тоже есть зубья, только внутренние. Большую работу в данной конструкции выполняет водило, представляющее собой рычажный механизм. Движение может осуществляться по-разному: либо солнце будет вращаться, либо эпицикл, но всегда совместно с сателлитами.
При работе планетарного механизма может использоваться и другая конструкция, например, два солнца, сателлиты и водило, но без эпицикла. Еще вариант — два эпицикла, но без солнца. Водило и сателлиты должны присутствовать всегда. В зависимости от количества колес и расположения осей их вращения в пространстве, конструкция может быть простой или сложной, плоской или пространственной.
Чтобы полностью понять, как работает такая система, необходимо разобраться в деталях.
3D печать
Анимация печатной шестеренки
Планетарные передачи стали популярными в 3D-печати по нескольким причинам. Планетарные коробки передач могут обеспечить большое передаточное число в небольшом и легком корпусе. Некоторые люди устанавливают такие редукторы, чтобы получать более точные 3D-отпечатки, уменьшая движение своих шаговых двигателей.
Мотор с редуктором должен вращаться все дальше и быстрее, чтобы обеспечить такое же выходное движение в 3D-принтере, что является преимуществом, если его не перевешивает более низкая скорость движения. Если шаговый двигатель должен вращаться дальше, он также должен сделать больше шагов, чтобы переместить принтер на заданное расстояние; поэтому шаговый двигатель с понижающей передачей имеет меньший минимальный размер шага, чем тот же шаговый двигатель без коробки передач. Несмотря на то, что существует множество факторов, планетарные редукторы могут помочь в создании высококачественных 3D-отпечатков.
Одно из популярных применений планетарных систем, напечатанных на 3D-принтере, — это игрушки для детей. Поскольку шестерни в елочку легко напечатать на 3D-принтере, стало очень популярно напечатать на 3D-принтере подвижную планетарную шестерню в виде елочки для обучения детей принципам работы шестерен. Преимущество шестерен в елочку состоит в том, что они не выпадают из кольца и не нуждаются в монтажной пластине, что позволяет четко видеть движущиеся части.
Устройство агрегата
Основа конструкции формируется всего тремя функциональными частями с одной осью вращения. Их представляет водило и два зубчатых центральных колеса. Также в устройстве предусматривается обширная группа вспомогательных звеньев в виде комплекта одноформатных зубчатых колес, коронной шестерни и подшипников. Из этого можно сделать вывод, что планетарная коробка передач – это механизм из семейства зубчатых «коробок», однако с принципиальным отличием. Оно заключается в условной независимости угловых скоростей у каждого из основных звеньев. Теперь стоит подробнее ознакомиться с элементами агрегата:
- Водило – основа и обязательная часть любой планетарной системы, в том числе с дифференциальной связью. Это рычажный механизм, представляющий собой пространственную вилку, ось которой совмещается с общей осью передачи. При этом зубчатые оси с сателлитами вращаются вокруг нее в плоскостях размещения центральных колес.
- Зубчатые колеса. В первую очередь следует разделять группы больших центральных и малых центральных колес этого типа. В первом случае речь идет о крупных колесах с внутренними зубцами – данная система носит название эпицикла. Что касается малых колес с зубьями, то они отличаются наружным расположением зубьев – также их называют солнечной шестерней.
- Сателлиты. Колесная группа планетарной коробки передач (реже – одинарное зубчатое колесо), элементы которой обязательно имеют внешние зубья. Сателлиты располагаются в сцепке с обеими группами центральных колес. В зависимости от функциональности и мощности техники количество сателлитов может варьироваться от 2 до 6, но чаще всего используется 3 сегмента, поскольку в этом случае отпадает потребность в дополнительных уравновешивающих устройствах.
Устройство и принцип работы
Редуктор без дополнений газовый или гидравлический, подразумевает механическое устройство для изменения угловой скорости и крутящего момента. Он работает по принципу Золотого правила, когда передаваемая вращением мощность практически не изменяется, уменьшается на КПД.
Устройство
Простейшее устройство редуктора, это зацепление из шестерни и зубчатого колеса. Крутящий момент передается через непосредственный контакт зубьев – элементов детали. Они движутся с одинаковой линейной скоростью, но разной угловой. Количество вращений шестерни и колеса за единицу времени разное, зависит от диаметров деталей и количества зубьев.
Шестерни и колеса неподвижно закреплены на валах или изготовлены совместно с ними. В корпусе может быть от одной до нескольких пар зубчатых зацеплений. На сборочном чертеже редуктора хорошо видно его устройство и составные части:
- корпус;
- крышка корпуса;
- пары в зацеплении;
- валы;
- подшипники;
- уплотнительные кольца;
- крышки.
Корпус в самом низу имеет отверстие для слива масла и приспособление контроля уровня смазочных материалов, глазок или щуп. Разъем с крышкой совпадает с плоскостью расположения осей.
На кинематической схеме редуктора схематически указаны зубчатые соединения, расположений валов и направление вращения. Также показан тип зуба, прямой или наклонный. По кинематической схеме можно определить количество ступеней, передаточное число и другие характеристики, как работает данный редуктор.
Принцип действия
Принцип работы механического редуктора основан на передаче вращательного момента от одного вала другому посредством взаимодействия зубчатых деталей, неподвижно закрепленных на них. Линейная скорость зубьев одинаковая. Она не может быть разной, поскольку контакт жесткий.
Принципом действия редуктора является давление зуба на поверхность аналогичного со смежной детали и передача при этом усилия, двигающего ведомое колесо. В результате скорость вращения уменьшается. На выходном валу создается усилие, которое способно привести в движение исполняющий механизм.
Главная пара всегда первая, быстроходная шестерня или червяк, соединенный с двигателем и соответствующее ему колесо. По ее типу определяется и весь узел. Количество ступеней равно количеству зацеплений, имеющих передаточное число больше 1.
Кроме рабочих шестерен могут использоваться паразитки – шестерни, которые не изменяют крутящий момент, только направление вращения колеса и соответственно вала, на котором оно расположено.
Маркировка
В условном обозначении редуктора имеется ряд цифр и букв, указывающих на его параметры и тип. Первым стоит указание на количество ступеней и вид зубчатого зацепления:
- цилиндрическое – Ц;
- червячное – Ч;
- коническое – К;
- глобоидное – Г;
- волновые – В;
- планетарное – П.
Комбинированные модели обозначаются несколькими буквами, начиная с первой пары:
- цилиндрически-червячные – ЦЧ;
- червячно-цилиндрические – ЧЦ;
- конически-цилиндрические – КЦ.
Количество передач данного вида указывается цифрой перед буквой.
Горизонтальное расположение считается нормой и не имеет своего обозначения. Для вертикального узла после обозначения типа передач ставится буква В. Б – означает быстроходную модель. За ним ставится условное числовое обозначение варианта сборки.
Далее указывается расстояние между осями ведущего и выходного вала, передаточное число цифрами и форма выходного вала буквенным обозначением, например, Ц – цилиндрический хвостовик, К – конический.
В маркировке может присутствовать указание на климатическое исполнение, например, для тропиков, северных районов, по какому госту выполнено.
Например: 1Ц2У-250-31,5-22-М-У2. Двухступенчатый цилиндрический с горизонтальным расположением. Межцентровое расстояние валов тихоходной ступени 250 мм, передаточное число 31,5. Вариант сборки узла 22, хвостовик по типу муфты, климатическое исполнение соответствует ГОСТ 15150-69.
Электрический привод – мотор и передаточный узел в одном корпусе, имеет несколько отличающуюся маркировку. Вначале стоит буквенное обозначение марки сборного привода, указывается скорость вращения выходного колеса, поскольку она постоянна, соединена с одним электродвигателем.
Из чего состоит и как работает планетарная втулка
Устройство планетарных втулок достаточно сложное и напоминает механизм автомобильной коробки передач. Для наглядности покажем стандартную схему для всей планетарной передачи:
Желтым цветом изображена солнечная шестерня. «Солнышко» жестко закреплено на оси заднего колеса велосипеда. Именно с ней зацепляются обозначенные синим цветом планетарные шестеренки. Для их фиксации используется «водило» (зеленый цвет). Эта деталь не позволяет сателлитам – так иначе можно называть планетарные шестерни – разъезжаться и сцепляться друг с другом, а также определяет их направление движения.
Довершает механизм эпициклическая шестерня, которая вращается за счет педалирования. На рисунке она показана красным цветом.
Звездочка сопрягается с механизмом втулки с помощью шлицевого привода, исполнительного механизма втулки. При изменении передачи он изменяет скорость вращения водила относительно кольцевой шестерни, благодаря чему и достигается подстройка велосипеда под угол направления дороги и регулируется его скорость.
Интересная особенность такого типа механизма – это работа в качестве редуктора. Солнечная шестерня играет роль неподвижного элемента, эпицикл – ведомого элемента цепи, водило замыкается на корпус втулки. Для примера рассмотрим, как работает механизм планетарной передачи на простой трехскоростной планетарке:
- Пониженная передача. Кольцевая шестерня опережает водило за счет его зацепления корпуса планетарной втулки. Передаточное отношение меньше единицы и составляет 0.733.
- Главная передача. Крутящий момент с эпицикла передается на втулку за счет зацепления ее с планетаркой. Иначе говоря, со втулкой соединено не водило, как на первой передаче, а звездочная шестерня. Что происходит при этом? Втулка вращается быстрее водила, а для достижения максимальной скорости понадобится больше усилий по сравнению с пониженной передачей.
- Передаточное число повышенной, или третьей, передачи больше единицы, и для трехскоростных велосипедов оно составляет 1.364. Направление движения водила и втулки противоположны, благодаря чему достигается ее ускорение по сравнению с главной передачей.
- Для планетарных втулок с 5, 7 и т.д. скоростями диапазон передаточных отношений выше, чем у трехскоростной за счет большего количества шестеренчатых механизмов. Принцип работы многоскоростных и простых втулок будет одинаковым. Разница только в том, что у каждой планетарной составляющей будут свои фиксированные (как у 3-х ступенчатой планетарки) значения отношений передач, а в целом у механизма их будет в несколько раз больше.
Планетарный механизм: назначение и устройство
В устройстве трансмиссии планетарный механизм позволяет изменять скорость, а также при необходимости направление вращения выходного вала. При этом в работе механизма можно выделить зависимость, что чем ниже будет скорость вращения выходного вала, тем большим будет на нем крутящий момент.
Итак, планетарная передача в основе имеет несколько вращающихся шестерен. Шестерни бывают следующих видов:
- солнечная шестерня;
- коронная шестерня
- сателлиты;
Само свое название планетарный механизм получил благодаря особенности размещения шестерен (подобно планетам вокруг солнца). Схема устройства предполагает, что в центре расположена солнечная шестерня, вокруг которой вращаются сателлиты. Сателлиты связаны между собой водилом, снаружи сателлитов установлена коронная шестерня. Указанные виды шестерен связаны с входным или выходным валом.
Общий принцип работы планетарной передачи состоит в том, чтобы одна из шестерен (солнечная, коронная или водило) имела жесткую фиксацию. В этом случае элемент становится передающим.
В качестве примера можно представить, если закреплена коронная шестерня, тогда входной вал передает крутящий момент на солнечную шестерню. От солнечной шестерни идет передача момента дальше на сателлиты. Сателлиты проходят по коронной шестерне и вращают водило.
Водило, в свою очередь, передает крутящий момент на выходной вал коробки. По такому принципу построена планетарная коробка передач, куда также включены специальные системы торможения (тормоза) и блокировки элементов планетарного механизма.
С учетом особенностей конструкции можно выделить два типа планетарных передач:
- в первом типе блокируется только один тип шестерен (одноступенчатая планетарная передача);
- во втором возможна блокировка разных видов шестерен (многоступенчатая планетарка);
Также планетарный ряд может быть как с закрепленным элементом, так и с дифференциальным. Во втором случае ни один из элементов не зафиксирован жестко, что позволяет изменять вращение отдельно (посредством усилий, которые прикладываются к валам). Данный механизм позволяет вращаться наименее нагруженному валу с наибольшей скоростью.
Где используется планетарный механизм в автомобиле
Начнем с того, что планетарная передача используется в устройстве различных типов техники. Что касается автоиндустрии, чаще всего планетарный механизм лежит в основе дифференциала автомобиля.
Дифференциал стоит на каждой ведущей оси. Именно в дифференциале использован такой тип планетарной передачи, где ни один из элементов не имеет жесткой фиксации. Через входной вал момент передается на шестерню (не коронную, так как зубья расположены не вниз, а по сторонам). Шестерня передает момент на сателлиты, к которым присоединены 2 солнечные шестерни.
Принцип работы таков, что сателлиты вращаются с одинаковой скоростью, однако солнечные шестерни могут иметь разную скорость вращения, причем отличную друг от друга. Однако если сложить скорости, сумма всегда является одинаковой.
Идем далее. Планетарная передача также лежит в основе гидромеханической планетарной коробки передач АКПП. Если просто, общий принцип работы также основывается на вращении трех типов шестерен. При этом устройство намного сложнее, так как современная коробка передач требует от 5-и до 6-и передач для движения вперед. Вполне очевидно, что на одном планетарном механизме невозможно реализовать такую задачу.
В устройстве современной трансмиссии инженеры используют целый планетарный ряд АКПП. Планетарные ряды фактически являются связанными между собой несколькими планетарными механизмами. Благодаря такой конструкции можно гибко реализовать диапазон передаточного соотношения от 0.7:1 (для повышенных передач) и 4.5:1 (на пониженных). Передаточное соотношение, например, 0.7:1, означает, что на один оборот выходного вала входной вал делает 0.7 оборота.
Также в устройстве АКПП имеются специальные тормозные механизмы, которые нужны для переключения передач. Указанные механизмы (тормоза АКПП) имеют возможность притормозить вращение шестерен, а также полностью их заблокировать для подключения других элементов.
Планетарная коробка — передача
Планетарные коробки передач с двумя степенями свободы могут быть получены путем комбинирования планетарных рядов ( см. фиг.
Планетарная коробка передач ( Гризуолд-Паккард) ( четырехступенчатая) с ускоряющей передачей и с электромагнитным управлением в сочетании с гидродинамической муфтой; б — схема коробки передач Гри-зуолд — Паккард: / — планетарный комплект с понижающей передачей; 2 — то же с повышающей передачей; 3 — то же для заднего хода; 4, 5 и 6 — электромагниты; 7 — каретка; 8 — запорная муфта.
Планетарная коробка передач состоит из нескольких планетарных передач. Размеры шестерен в этих передачах неодинаковы, поэтому коробка имеет несколько передаточных чисел. Переключение передач осуществляется особыми устройствами — фрикционами управления, которыми можно попеременно затормаживать либо зубчатые венцы ( коронные шестерни), либо солнечные шестерни.
Планетарные коробки передач служат для ступенчатого изменения передаточного отношения. Переключения производятся тормозами И фрикционными муфтами. Различают две основные схемы механизма. Схема простого планетарного механизма имеет более двух центральных колес и соответствующее число сателлитов, закрепленных на подвижных осях ( фиг.
Планетарные коробки передач служат для ступенчатого изменения передаточного отношения Переключения производятся тормозами и фрикционными муфтами.
Планетарные коробки передач, управляемые тормозами и фрикционными муфтами, являются разновидностью коробок передач с постоянным зацеплением шестерен.
Однако планетарные коробки передач имеют более высркую стоимость.
Достоинствами планетарных коробок передач по сравнению с коробками, имеющими неподвижные оси шестерен, являются возможность получения больших передаточных чисел при небольшом числе зубчатых колес, а также меньшие вес и размеры. Однако планетарные коробки передач имеют более высокую стоимость.
Валы планетарных коробок передач рассчитывают на кручение. Изгиб может иметь место при установке на валу ленточного тормоза от неуравновешенных радиальных сил.
Конструкция планетарной коробки передач аналогична рассмотренной выше и состоит из четырех планетарных рядов, управляемых с помощью четырех дисковых тормозов. Все планетарные ряды выполнены с одинарными сателлитами.
В планетарных коробках передач фрикционные элементы дисков сцепления и ленточных тормозов работают в том же масле, которое используется в качестве рабочей жидкости в гидротрансформаторе и в качестве смазочного материала зубьев шестерен планетарной передачи. При такой работе повышается их долговечность и надежность эксплуатации. Вместе с тем, работающие в масле фрикционные элементы могут передать меньший момент трения, чем диски при отсутствии смазки. Чтобы избежать этого, фрикционные диски и ленты тормозов снабжают специальными накладками из металлокерамики или других материалов, обеспечивающих постоянство сил и моментов-трения при работе их в среде смазочного материала.
В планетарных коробках передач фрикционные элементы дисков сцепления и ленточных тормозов работают в том же масле, которое используется в качестве рабочей жидкости в гидротрансформаторе и в качестве смазочного материала зубьев шестерен планетарной передачи. При такой работе повышается их долговечность и надежность эксплуатации. Вместе с тем, работающие в масле фрикционные элементы могут передать меньший момент трения, чем диски при отсутствии смазки. Чтобы избежать этого, фрикционные диски и ленты тормозов снабжают специальными накладками из металлокерамики или других материалов, обеспечивающих постоянство сил и моментов трения при работе их в среде смазочного материала.
В планетарных коробках передач нагрузки от ведущей шестерни к ведомой передаются через 2 — 4 сателлита.
Рычаг управления планетарной коробки передач располагается на нулевой колонке и имеет четыре положения: Н — нейтральное; Д — эксплуатационная ( вторая) передача; эта передача автоматически переключается на третью ( прямую) передачу в соответствии с изменением нажатия на педаль управления дросселем карбюратора и сопротивлением дороги; Я — понижающая, или первая передача; ЗХ — задний ход.
Схема гидромеханической передачи. |
История
Около 500 г. до н.э. греки изобрели идею эпициклов, кругов, движущихся по круговым орбитам. С помощью этой теории Клавдий Птолемей в Альмагесте в 148 году нашей эры смог предсказать орбитальные траектории планет. Механизм Antikythera , около 80 г. до н.э., был левередж , который был в состоянии приблизительно эллиптической траектории Луны по небу, и даже правильно за девять лет прецессией этого пути. (Греки увидели бы это не как эллиптическое, а как эпициклическое движение.)
В AD трактате второго века Альмагест , Птолемей использовал вращающийся отводящий и эпициклы , которые образуют планетарные зубчатые передачи для прогнозирования движения планет. Точные предсказания движения Солнца, Луны и пяти планет, Меркурия, Венеры, Марса, Юпитера и Сатурна, по небу предполагали, что каждая из них следовала траектории, отслеживаемой точкой на планетарной шестерне планетарной зубчатой передачи. Эта кривая называется эпитрохоидой .
Эпициклическая передача использовалась в антикиферском механизме около 80 г. до н.э., чтобы отрегулировать отображаемое положение Луны с учетом эллиптичности ее орбиты и даже для апсидальной прецессии ее орбиты. Две передние шестерни вращались вокруг немного разных центров, и одна приводила в движение другую не с зацеплением зубьев, а со штифтом, вставленным в прорезь на втором. Когда паз приводил в движение вторую передачу, радиус движения изменялся, вызывая ускорение и замедление ведомой шестерни на каждом обороте.
В 11 веке нашей эры планетарная передача была заново изобретена Ибн Халафом аль-Муради в Аль-Андалусе . Его водяные часы с зубчатой передачей использовали сложный зубчатый механизм, который включал как сегментарные, так и планетарные передачи.
Ричард Валлингфордский , английский аббат монастыря Сент-Олбанс, позже описал планетарный механизм астрономических часов XIV века. В 1588 году итальянский военный инженер Агостино Рамелли изобрел книжное колесо , вертикально вращающийся книжный шкаф , содержащий планетарную передачу с двумя уровнями планетарной передачи для поддержания правильной ориентации книг.
Советы по подбору планетарного редуктора
Перед выбором планетарного редуктора проводят точный расчёт нагружения и режимов работы механизма. Определяют тип передачи, осевые нагрузки, температурный диапазон и типоразмеры редуктора. Для тяжёлой спецтехники, где нужен большой крутящий момент при малых скоростях, выбирают редуктор с высоким передаточным отношением.
Чтобы сбавить угловую скорость, не снижая крутящего момента, применяют привод с электродвигателем и редуктором. При выборе мотор редуктора учитывают:
- эксплуатационную нагрузку;
- момент вала на выходе;
- частоту вращения входного и выходного валов;
- мощность электродвигателя;
- монтажное исполнение.
Применение
Сегодня электродвигатель с планетарным редуктором получили весьма широкое распространение, могут применяться в самых различных случаях. Область применения во многом зависит от конструктивных особенностей устройства и его характеристик. Выделяют следующие варианты исполнения:
- Цилиндрические. Это связано с тем, что конструктивные особенности позволяют обеспечить КПД около 95%. Назначение редуктора с планетарной передачей заключается в передаче достаточно большого усилия между параллельными и соосным валами. Передача вращения осуществляется за счет прямозубых, косозубых и шевронных колес. Коэффициент может варьировать в пределе от 1,5 до 600. Достоинством подобного варианта исполнения можно также назвать компактные размеры, а также высокую степень защиты от воздействия окружающей среды.
- Конические сегодня также встречаются довольно часто. Конструктивной особенностью можно назвать то, что шестерни имеют коническую форму. За счет подобной формы обеспечивается плавность сцепки, а также высокую степень устойчивости к нагрузкам. В алы в данном случае могут располагаться вертикально или горизонтально.
- Могут применяться и волновые устройства. Они характеризуются тем, что имеют гибкое промежуточное число. Основными конструктивными элементами можно назвать эксцентрики и кулачки, которые обеспечивают растяжение гибкого колеса. Подобный вариант исполнения характеризуется высоким передаточным числом, плавностью хода и повышенной степенью герметичности. Выделяют несколько различных разновидностей этого механизма, к примеру, могут применяться различные типы подшипников.
Несмотря на достаточно сложную конструкцию, она получила весьма широкое распространение. Примером можно назвать машиностроительную область, станкостроение и производство различных механизмов. Примером можно назвать автомобильную коробку передач, которая предназначена для передачи вращения и изменения предаваемого усилия или скорости.
Наиболее важными параметрами выбора можно назвать следующие показатели:
Тип передачи, которая применяется для передачи вращения.
Максимально допустимая осевая и консольная нагрузка. На момент эксплуатации редуктора нагрузка, возникающая на момент работы распределяется самым различным образом.
Имеет значение и размер редуктора. Слишком большой показатель определяет отсутствие возможности установки в тех или иных условиях
Однако, нужно уделить внимание тому моменту, что увеличение мощности достигается исключительно за счет увеличения размеров устройства. Поэтому приходится подбирать более оптимальный вариант исполнения.
Диапазон температур, при которых механизм может применяться
Тип применяемого материала при изготовлении корпуса и основных элементов определяет то, в каких условиях устройство может эксплуатироваться. Слишком высокая температура становится причиной повышения пластичности и снижения твердости поверхности, за счет чего есть вероятность деформации и износа изделия. Для обеспечения охлаждения проводится добавление масла. Не все варианты исполнения могут применяться для длительной работы, некоторые могут эксплуатироваться только периодически.
Популярность производителя также имеет значение. Некоторые заводы характеризуются тем, что производят качественные и долговечные механизмы.
Все наиболее важные параметры указываются в инструкции по эксплуатации, что существенно упрощает процесс выбора подходящего варианта исполнения.
Управляющие элементы планетарной передачи
Наличие у любых ПМ и их сборок двух и более степеней свободы может использоваться в некоторых типах ПП в качестве основного функционала (здесь имеются ввиду планетарные дифференциалы, разветвители потоков и суммирующие ПП). Однако для работы ПП в режиме редуктора с одним ведущим звеном и одним ведомым всем остальным свободным основным звеньям необходимо задать определённую угловую скорость (в том числе, возможно, нулевую). Лишь в таком случае лишние степени свободы будут сняты, все свободные основные звенья станут опорными, а вся подающаяся на единственное ведущее звено мощность будет снята с единственного ведомого в полном объёме (с поправкой на КПД ПП). Функцию задания необходимых угловых скоростей свободным звеньям выполняют так называемые управляющие элементы ПМ. Таковых элементов два: фрикционы и тормоза.
Фрикционы соединяют друг с другом два свободных звена ПМ, либо соединяют свободное звено с внешним подводом мощности. В обоих случаях при полной блокировке фрикционы обеспечивают паре соединённых элементов некую одинаковую ненулевую угловую скорость. Конструктивно обычно выполнены в виде многодисковых фрикционных муфт, хотя в отдельных случаях возможны и более простые муфты.
Тормоза соединяют свободные звенья ПМ с корпусом ПП. При полной блокировке тормоза обеспечивают заторможенному свободному звену нулевую угловую скорость. Конструктивно могут быть аналогичны фрикционам — в виде многодисковых фрикционнных муфт; но широко распространены и более простые конструкции — ленточные, колодочные, однодисковые.
Фрикционы и тормоза по принципу своего действия являются идеальными синхронизаторами угловых скоростей соединяемых элементов. Также они выполняют предохранительные функции и при резких ударных нагрузках могут пробуксовывать, переводя динамические нагрузки в работу сил трения. И также они могут выполнять функцию главной муфты сцепления (главного фрикциона), поэтому зачастую в механических трансмиссиях машин с ПКП главная муфта сцепления вообще не применяется. При том, что тормоза в отличие от фрикционов допускают больше вариантов фактического исполнения, конструкция и тех и других может быть совершенно одинаковой, или, по крайней мере, унифицированной, несмотря на существенное функциональное различие фрикционов и тормозов. Помимо фрикционов и тормозов в работе ПП могут быть задействованы автоматически срабатывающие механизмы свободного хода (другое их название — обгонные муфты или автологи). В русскоязычных кинематических схемах планетарных КП фрикционы, тормоза и муфты свободного хода обычно обозначаются буквами Ф, Т и М.