Крутящий момент двигателя: что это такое

Различные типы двигателей

Как мы с вами уяснили, чем на меньших оборотах наступает максимальный крутящий момент — тем лучше, но какие моторы могут под это подходить? И вообще у каких «большой запас» этого момента? Ведь обычный бензиновый четырехцилиндровый атмосферник, выходит на свой номинал примерно в 5000 – 6000 оборотов.

НО есть моторы, которые выдают достаточно большие моменты, причем наступают они при достаточно низких оборотах. Это многоцилиндровые моторы, а также  «V» – образные типы, начиная с V6 – V8. Турбированные агрегаты, имеют большой запас момента, даже при относительно малых объемах.

Однако абсолютным рекордсменом являются дизельные варианты, особенно те которые устанавливались на трактора, ведь здесь важна тяга именно на низах (скорость на трассах абсолютно не нужна). Такие варианты выходят на номинал, уже при 1500 оборотов, просто представьте! Такие агрегаты называют «тяговитыми» из-за быстрого набора крутящего момента.

Условно моторы можно разделить на четыре лагеря:

  • Это обычные атмосферники, 4 цилиндра.
  • Многоцилиндровые агрегаты, от 6 до 12 «горшков», сюда же можно записать и V – образные.
  • Это турбированные моторы
  • Дизельные агрегаты

Про «многоцилиндровые» (второй тип) сейчас особо заострять не буду, здесь понятно, что чем больше цилиндров – тем больше мощность и соответственно крутящий момент. Минус только в том что эти агрегаты тяжелые, прожорливые, и очень большие по размерам.

А вот остальные три типа стоит сравнить для полного понимания, возьмем три мотора от нового KIA SPORTAGE, смотрим таблицу.

Объем, двигателя Обороты в минуту

(об/мин)

Максимальная мощность

(в л.с.)

Крутящий момент

(в Нм)

Бензиновый, 4 – цилиндровый рядный 2,0 литра 6200 150
  4000 192
Турбированный, 4 —  цилиндровый рядный 1,6 литра 5500 177
  2000 — 4500 265
Дизельный, 4 —  цилиндровый рядный 2,0 литра 4000 185
  1750 — 2750 400

Бензиновая атмосферная «четверка», развивает максимальную мощность только при 6200 оборотах в минуту, зато максимальный крутящий момент наступает уже при 4000 оборотов. Турбо вариант, 177 л.с при 5500 оборотов, но момент здесь намного выше 265 в диапазоне от 2000 до 4500 об. Но рекордсменом по л.с. и крутящему моменту идет дизель, 185 л.с. при 4000 об/мин, и крутящий момент 400! (просто вдумайтесь) в интервале 1750 – 2750 об/мин.

Как видите бензиновые агрегаты проигрывают дизелю в моменте (обычный атмосферник примерно в 2 с небольшим раза). Причем максимальной отдачи можно достичь только при 4000 об/мин. Зато бензиновый мотор легко крутится до 6200, а то и больше 7000 – 8500 об/мин, что позволит развить ему большую мощность. Дизель же не может похвастаться высокими оборотами, максимальная полка зачастую всего 4000 — 5000 об/мин, поэтому они могут проигрывать в максимальной мощности своим бензиновым собратьям.

НА старте бензиновый мотор выиграет у дизельного агрегата! Почему? ДА все просто, бензиновый агрегат можно крутить до 6500, а в редких случаях до 8000 об/мин, не переключая передачи. А вот дизель достигнет пик своего момента максимально быстро (уже при 1750 об/мин) и вам нужно будет тратить время на переключение, далее еще одна передача и т.д. Конечно эта ситуация справедлива для механики, на многих современных автоматах переключения происходят максимально быстро. ДА и для того чтобы тягаться с дизелем бензину, всегда нужно будет держать повышенные обороты, чтобы сравняться в мощности. Например, при 90 км/ч на трассе, чтобы ускориться на бензиновом агрегате, нужно скинуть передачу пониже (увеличивая обороты — увеличиваем мощность), а вот дизелю делать этого не нужно!

Крутящий момент двигателя: формула расчета

Согласно физическому определению крутящий момент М есть произведение силы F на длину плеча рычага L, куда эта сила приложена:

М = F * L

Сила F измеряется в ньютонах, длина  – в метрах. Таким образом, момент силы  —  в ньютон на метр.

Применительно к двигателям внутреннего сгорания  (ДВС) сила, выработанная в рабочем объеме  при сгорании топливно-воздушной смеси, давит на поршень, который передает свое усилие кривошипно-шатунному механизму коленвала. Именно длина рычага кривошипа учитывается при расчете крутящего момента. Именно он является определяющей характеристикой при оценке параметров динамического разгона автомобиля.

Видео — мощность и крутящий момент двигателя: что это такое с примерами

Максимальный крутящий момент двигателя в технических характеристиках всегда указывается совместно с величиной оборотов двигателя, при которых он может быть достигнут. В этом смысле различают низкооборотные и высокооборотные двигатели. К низкооборотным относятся, в большинстве, дизельные двигатели. Они могут «выстрелить» при движении с оборотами от 2000 до 3000 в минуту. Бензиновые двигатели обычно показывают максимальный крутящий момент при более высоких оборотах – от 4500 об./минуту.

Бензиновые высокооборотные двигатели достигают большой мощности за счет того, что им подвластны обороты до 8.000 об./минуту и более. Низкооборотные дизельные двигатели способны при меньшей мощности достигать максимальный крутящий момент на более малых оборотах (вплоть до 2.000), поэтому в динамике движения и обгона в городском ритме нисколько не уступают  бензиновым.

Для любителей математических вычислений полезна формула расчета мощности двигателя, исходя из его максимального крутящего момента:

Р = М * n / 9549

Здесь Р – мощность двигателя в килоВаттах, М – максимальный крутящий момент, n – количество оборотов двигателя.

Для перевода мощности Р в привычные лошадиные силы можно полученную величину умножить на 1,36.

Некоторые производители указывают величину номинального крутящего момента, определяемую на холостых оборотах двигателя.

Нагрузка насосов и типы нагрузки электродвигателя

Выделяют следующие типы нагрузок:

Постоянная мощность

Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.

Постоянный вращающий момент

Как видно из названия — «постоянный вращающий момент» — подразумевается, что величина вращающего момента, необходимого для приведения в действие какого- либо механизма, постоянна, независимо от скорости вращения. Примером такого режима работы могут служить конвейеры.

Переменный вращающий момент и мощность

«Переменный вращающий момент» — эта категория представляет для нас наибольший интерес. Этот момент имеет отношение к нагрузкам, для которых требуется низкий вращающий момент при низкой частоте вращения, а при увеличении скорости вращения требуется более высокий вращающий момент. Типичным примером являются центробежные насосы.

Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.

Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия, которые описывают соотношение между разностями давления и расходами.

Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.

Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.

В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.

Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.

Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.

На рисунке показан центробежный насос в разрезе. Требования к вращающему моменту для такого типа нагрузки почти противоположны требованиям при «постоянной мощности». Для нагрузок при переменном вращающем моменте потребный вращающий момент при низкой частоте вращения — мал, а потребный вращающий момент при высокой частоте вращения — велик. В математическом выражении вращающий момент пропорционален квадрату скорости вращения, а мощность — кубу скорости вращения.

Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:

Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.

В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.

Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.

Простым языком о крутящем моменте

Если внимательно изучить основные характеристики двигателя авто, то можно столкнуться со следующими понятиями:

  • уровень мощности мотора машины, который измеряется в лошадиных силах;
  • крутящий момент мотора машины (измеряется в ньютонометрах);
  • число оборотов, которые мотор машины делает в течение одной минуты.

Подавляющее большинство людей, которые видят значение в 100 или же в 200 л.с. считают, что это хорошо. И, по большому счету, это действительно так. 100 л.с. или же лошадиных сил являются очень хорошими показателями для городских кроссоверов, которые отличаются компактными размерами, или же для мощных хэтчбеков.

Однако такие характеристики как крутящий момент, число оборотов, которые мотор делает в течение одной минуты, являются не менее важными характеристиками мотора. Потому как уровень мощности в 200 л.с. может быть достигнут, только когда мотор автотранспортного средства работает на пределе. От крутящего момента и будет зависеть быстрота разгона транспортного средства.

Допустим, что вы едете на своей машине по автомобильной трассе на большой скорости, включив четвертую или же пятую передачу. Если вдруг дорога станет подниматься, то уровень мощности мотора вашего транспортного средства может просто оказаться недостаточно.

По этой причине вам придется переходить на низкие передачи, уровень мощности мотора, соответственно, от этого будет увеличиваться. Крутящий же момент обеспечивает увеличение уровня мощности мотора автотранспортного средства, помогая активизировать все его силы на то, чтобы преодолеть препятствие.

Это будет зависеть главным образом от конкретной марки транспортного средства. Что касается двигателей дизельного типа, то у них максимальный крутящий момент в подавляющем большинстве случаев наблюдается на трех-четырех тысячах оборотов в течение одной минуты.

Соответственно, у них гораздо лучше динамика разгона. Тем не менее, в плане максимального уровня мощности они очень сильного проигрывают двигателям, которые работают на бензине.

Ну и для того, чтобы читателям было совсем понятно, что представляет собой крутящий момент, расскажем о единицах, в которых он измеряется. Это метры и ньютоны. Это та сила, с которой мощность поступает от поршня на маховик через коленвал. И уже от него на трансмиссию (коробку передач). От скорости движения поршня будет непосредственным образом зависеть скорость движения маховика.

Хотя существуют и такие автотранспортные средства, мотор которых вырабатывает тягу даже при низких оборотах. К таким в частности, можно отнести различного рода трактора, самосвалы, а также внедорожники.

От чего зависит крутящий момент мотора автотранспортного средства

Само собой разумеется, что самые мощные моторы транспортных средств обладают достаточно крупными размерами. Соответственно, если ваше транспортное средство – это малолитражка или же компактный хэтчбек, то у вас не получится ни резко разогнаться, ни «стартануть» с места.

Исходя из этого, на малолитражках двигатель используется только лишь на половину своей максимальной мощности. В то время как мощные транспортные средства способны разгоняться практически с места. При этом отсутствует необходимость в быстром переключении передач.

Еще одним важным параметром, который оказывает самое непосредственное влияние на крутящий момент мотора автотранспортного средства, является его эластичность. Этот параметр показывает соотношение числа оборотов, которое делает мотор в течение одной минуты, и уровня мощности.

Даже на низкой передаче авто может ехать с достаточно высокой скоростью при двигателе, работающем на полную мощность. Это является особенно актуальным при езде по городским улицам, потому как там водителям приходится постоянно притормаживать, разгоняться, а потом снова притормаживать.

При езде по автомобильной трассе это тоже очень выгодно, потому как можно разогнать двигатель транспортного средства до необходимого количества оборотов всего одним нажатием на педаль.

Мощность

Прежде всего друзья давайте изначально вернемся к самому человеку, который научил всех нас измерять мощность. Его звали -Джеймс Уатт. Он был шотландским инженером чье имя стало обозначать стандартизированное название единицы измерения мощности. Ватты, как мы уже знаем используются для измерения конкретной мощности, ок ! Казалось бы, хватит дальше придумывать различную терминологию но, на этом как известно светлые умы человечества не остановились, в обиход ими были приняты еще и лошадиные силы. Зачем? К чему это? А вот к чему. Человеку нужен был реальный эквивалент показателя силы. В те временя им стала обычная лошадь. С тех пор так и повелось, одна метрическая лошадиная сила стала равна 735,5 Вт.

Что такое лошадиная сила? Она описывается так, как способность поднимать 75 кг на один метр за одну секунду. Мощность (в лошадиных силах) обозначает следующее, насколько быстро производится работа.

Увеличение крутящего момента двигателя – приемы модернизации

Такая величина, как крутящий момент, совсем мало зависит от того, насколько быстро вращается коленвал, так как он определяется объемом мотора и давлением в цилиндре. Существует несколько способов, с помощью которых его можно увеличить:

Чип тюнинг двигателя

Первый вариант тюнинга заключается в оптимизации всего, с чем работает агрегат. Система выпуска и заводские распределительные валы заменяются аналогами, с более высокой производительностью. Далее стоит заменить воздушный фильтр, дроссельную заслонку. Этот подход относительно прост и не затратный, однако можно рассчитывать на прирост мощности не более, чем на 20-30%.

Второй путь – модификация двигателя. Здесь предстоит несколько изменить характеристики двигателя. Данный способ идеален для инжекторных авто. Его суть в программном изменении чипа, подающего сигналы основным устройствам транспортного средства

Однако действовать нужно предельно осторожно, тщательно подбирая изменения, которые будут внесены

В результате такой сложной модификации, крутящий момент авто может увеличиться на 5-20%. На расходе топлива это сильно не отобразится, а в некоторых случаях он даже может снизиться. Помимо этого, достаточно высокие результаты даст прошивка.

Распределительный вал

Когда есть возможность, можно заменить обычный распредвал на спортивный, прирост производительности сразу даст изменение программы, которая управляет подачей рабочей смеси. Спортивный распределительный вал отличается от стокового профилем кулачков, а соответственно – фазами газораспределения. Это значит, что, таким образом можно добиться эффективной подачи рабочей смеси. Чем ее больше – тем больше давление на поршень. Такие действия способствуют к увеличению крутящего момента.

Доработка головки блока цилиндра

Значительный прирост производительности даст турбирование агрегата. В не модифицированном моторе сгораемая смесь, которая впускается головкой блока цилиндра, эффективно всасывается тактом. В случае модификации, смесь подается непосредственно турбиной, что позволяет существенно увеличить объем сгораемого газа, а значит и увеличить мощность.

Рабочий объем

Действенный метод увеличить крутящий момент – увеличить рабочий объем. Для этого шатуны, поршни и коленчатый вал меняются на аналоги, только с лучшими характеристиками. Такая модификация несколько увеличит крутящий момент, но только между низкими и средними оборотами агрегата. Это значит, что для получения необходимой мощности теперь не придется раскручивать мотор до максимально высоких оборотов, что положительно скажется на рабочих характеристиках.

Камера сгорания

Прирост мощности мотора даст возможность уменьшить камеру сгорания, поскольку уменьшение объема незначительно увеличит степень сжатия. Для того чтобы уменьшить камеру сгорания, вероятнее всего, придется фрезеровать головки блока цилиндра. Помимо этого, можно попробовать подобрать поршень такого размера, чтобы он занимал больший объем в верхней части. Однако стоит учитывать, что в 16-от клапанных моторах поршень, как правило, вплотную приближен к клапанам, поэтому заменить его поршнем иной формы не получится.

Поршни

Еще один способ увеличит крутящий момент – поршни двигателя заменить на более легкие аналоги. Это поможет уменьшить нагрузку на коренные шейки и коленчатый вал. Легкие поршни не так инертны, а значит – они намного легче смогут останавливаться в «мертвых точках».

Так же можно поставить поршни большего диаметра. Для этого придется расточить блоки цилиндров, однако это так же негативно скажется на динамических свойствах мотора: может уменьшиться ресурс двигателя. Прибегать к данному способу стоит в исключительных случаях.

Что такое мощность двигателя

Под мощностью следует понимать физическую величину, которая показывает совершаемую двигателем работу за единицу времени. При вращательном движении мощность определяется как произведение крутящего момента на угловую скорость вращения коленчатого вала. Обычно она указывается в лошадиных силах (л.с.), но встречается измерение и в кВт.

Существует несколько единиц измерения под названием «лошадиная сила», но, как правило, имеется в виду так называемая «метрическая лошадиная сила», которая равная ≈ 0,7354 кВт. А вот в США и Великобритании лошадиные силы, касающиеся автомобилей, приравнивают к 0,7456 кВт, то есть как 75 кгс*м/с, что приблизительно равно 1,0138 метрической.

  • 1 кВт = 1,3596 л.с. (для метрического исчисления);
  • 1 кВт = 1,3783 hp (английский стандарт);
  • 1 кВт = 1,34048 л.с. (электрическая «лошадка»).

Если же конвертировать мощность 1 лошадиной силы в киловатты (в промышленности или энергетике), то она будет примерно равна 0,746 кВт. Понятие лошадиная сила не входит в международную систему измерений (СИ), поэтому измерение мощности в кВт будет более правильным.

Виды мощности

Для определения характеристик двигателя применяют такие понятия мощности как:

  • индикаторная;
  • эффективная;
  • литровая.

Индикаторной называют мощность, с которой газы давят на поршень. То есть, не учитываются никакие другие факторы, а только давление газов в момент их сгорания. Эффективная мощность, эта та сила, которая передается коленчатому валу и трансмиссии. Индикаторная будет пропорциональной и среднему давлению газов на поршень.

Также есть параметр, называемый литровой мощность двигателя. Это соотношение объема двигателя к его максимальной мощности. Для бензиновых моторов литровая мощность составляет в среднем 30-45 кВт/л, а у дизельных – 10-15 кВт/л.

Как узнать мощность двигателя автомобиля

Конечно, значение можно посмотреть в документах на машину, но иногда требуется узнать мощность автомобиля, который подвергался тюнингу или давно находится в эксплуатации. В таких случаях не обойтись без динамометрического стенда. Его можно найти в специализированных организациях и на станциях техобслуживания. Колеса автомобиля помещаются между барабанами, создающими сопротивление вращению. Далее имитируется движение с разной нагрузкой. Компьютер сам определит мощность двигателя. Для более точного результата может понадобиться несколько попыток.

Таблица крутящего момента и мощности

  Марка автомобиля мощность, л.с. при об/мин крутящий момент, Нм приведенный момент, Нм
1 Alfa Romeo 8C Competizione 450 7000 470 470
2 Aston Martin DB9 477 6000 600 514
3 Audi A3 Sedan 2.0 TDI 150 4000 320 183
4 Audi A6 3.0 TDI 204 4500 400 257
5 Audi RS5 Coupe 450 8250 430 507
6 Audi S3 300 6200 380 337
7 Audi S4 333 7000 441 441
8 Audi S8 520 6000 652 559
9 Audi Q7 4.2 TDI 327 3750 760 407
10 Audi R8 4.2 420 7800 430 479
11 Bentley Mulsanne 512 4200 1020 612
12 BMW 330d F30 258 4000 560 320
13 BMW M135i F21 320 5800 450 373
14 BMW M5 F10 560 7000 680 680
15 BMW M550d xDrive F10 381 4400 740 465
16 BMW 750i F01 450 5500 650 511
17 BMW M3 E92 420 8300 400 474
18 BMW X5 M50d E70 381 4400 740 465
19 Bugatti Veyron 16.4 1001 6000 1250 1071
20 Cadillac Escalade 403 5700 565 460
21 Chevrolet Camaro ZL1 580 6000 754 646
22 Chevrolet Corvette Z06 507 6300 637 573
23 Citroën C5 V6 HDi 240 240 3800 450 244
24 Citroën DS5 eHDi 160 160 3750 340 182
25 Dodge Challenger SRT8 392 470 6000 637 546
26 Dodge SRT Viper 650 6150 814 715
27 Ferrari 458 Italia 570 9000 540 694
28 Ferrari 550 Maranello 480 7000 569 569
29 Ferrari F12 Berlinetta 740 8700 690 858
30 Ferrari FF 660 8000 683 781
31 Ford Explorer 2.0L EcoBoost 243 5500 366 288
32 Ford Fiesta ST 182 5700 240 195
33 Ford Focus ST 250 6000 340 291
34 Ford Kuga 1.6 EcoBoost 182 5700 240 195
35 Ford Mondeo 2.2 TDCi 200 3500 420 210
36 Honda Civic Type-R mk8 201 7800 193 215
37 Honda CR-V 190 7000 222 222
38 Honda S2000 240 7800 220 245
39 Hyundai Santa Fe 2.2 CRDi 197 3800 421 229
40 Infiniti G37 Sport 333 7000 365 365
41 Infiniti FX30d 238 3750 550 295
42 Jaguar XF 3.0 V6 D S 275 4000 600 343
43 Jaguar XJ 5.0 SC Supersport 510 6500 625 580
44 Jaguar XKR-S Coupe 550 6500 680 631
45 Jeep Grand Cherokee 3.0 CRD 250 4000 570 326
46 Jeep Grand Cherokee SRT8 465 6000 624 535
47 Kia Optima 2.4 180 6000 231 198
48 Kia Sorento 2.2 CRDi 197 3800 421 229
49 Koenigsegg Agera 940 6900 1100 1084
50 Lamborghini Aventador LP700-4 700 8250 690 813
51 Land Rover Discovery 4 5.0 V8 375 6500 510 474
52 Land Rover Discovery 4 SDV6 245 4000 600 343
53 Lexus LF-A 560 8700 480 597
54 Lexus IS-F 423 6600 505 476
55 Maserati 3200GT 370 6250 491 438
56 Maserati Granturismo S 440 7000 490 490
57 Maybach 57 550 5250 900 675
58 Mazda 6 2.2 SkyActiv-D 175 4500 420 270
59 Mazda CX-9 Touring AWD 277 6250 366 327
60 Mclaren F1 627 7500 651 698
61 Mclaren MP4-12C 600 7000 600 600
62 Mercedes-Benz A 45 AMG 360 6000 450 386
63 Mercedes-Benz C 250 CDI W204 201 4200 500 300
64 Mercedes-Benz CLA 250 211 5500 350 275
65 Mercedes-Benz GL63 AMG 558 5250 759 569
66 Mercedes-Benz S 600 W221 517 5000 830 593
67 Mercedes-Benz S 63 AMG W222 585 5500 900 707
68 Mercedes-Benz SL 65 AMG R231 630 5000 1000 714
69 MINI Cooper SD Countryman 143 4000 305 174
70 MINI JCW 211 6000 280 240
71 Mitsubishi Lancer Evolution X 295 6500 422 392
72 Mitsubishi Outlander 3.0 230 6250 291 260
73 Mitsubishi Pajero 3.2 DI-D 200 3800 441 239
74 Nissan GT-R R35 550 6400 632 578
75 Nissan Patrol 405 5800 560 464
76 Opel Astra OPC 280 5500 400 314
77 Opel Insignia 2.0 CDTI 195 4000 400 229
78 Opel Insignia OPC 325 5250 435 326
79 Peugeot 308 2.0 HDI 140 4000 340 194
80 Peugeot RCZ 200 THP 200 5800 275 228
81 Porsche 911 Carrera S 991 400 7400 440 465
82 Porsche 911 Turbo S 991 560 6750 750 723
83 Porsche Carrera GT 612 8000 590 674
84 Porsche Cayenne S Diesel 382 3750 850 455
85 Porsche Panamera Diesel 300 4000 650 371
86 Range Rover 5.0 Supercharged 510 6500 625 580
87 Range Rover Sport 4.4 TDV8 339 3500 700 350
88 Renault Clio RS 200 7100 215 218
89 Renault Megane dCi 160 160 3750 380 204
90 Rolls-Royce Ghost 570 5250 780 585
91 Rolls-Royce Wraith 635 5600 800 640
92 Skoda Fabia RS 180 6200 250 221
93 Skoda Octavia 2.0 TDI 143 4000 320 183
94 Subaru Impreza WRX STI 300 6200 350 310
95 Subaru Legacy Outback 3.6 250 6000 335 287
96 Toyota GT86 200 7000 205 205
97 Toyota RAV4 180 6000 233 200
98 Volkswagen Golf GTI 230 6200 350 310
99 Volkswagen Touareg 3.0 TDI 204 4750 450 305
100 Volvo S60 T6 304 5600 440 352
101 Volvo XC60 D5 215 4000 420 240

← Круиз-контроль
Ксенон →

  • 1
  • 8523

Постоянный ли крутящий момент автомобиля

Нет. Как уже отмечалось, КМ зависит от числа оборотов двигателя. Мотор выходит на пик мощности постепенно, наращивая ньютон-метры до пиковой точки, а затем снижается. Почему так происходит? Ответ кроется во взаимосвязи оборотов мотора и скорости движения.

На разных скоростях и при разных оборотах мотор выполняет отличные друг от друга процессы. Разнится число искровых зажиганий, расход топлива, количество остаточных газов в камере. Крутящий момент минимален на малых оборотах, когда существует угроза детонации.

На средних оборотах ситуация в корне меняется. От клапана впуска поступает больше воздуха, соответственно осадочных газов становится меньше. Опасность взрыва сокращается. Мотор как бы оживает, растёт КМ. Но с его увеличением возрастает и нагрузка на весь двигатель. Появляются значительные механические потери, расходы на разогрев горюче-смазочных материалов. По мере их накопления качество работы двигателя не улучшается, отражаясь на моменте.

Визуально это можно представить на графике. Рассмотрим пример кривой для автомобиля середины 1990-х годов.

Конструкторы стараются поднять крутящий момент двигателя за счёт изменения типа, дополнительных функций. Всё чаще применяется электронное управление. Новшество облегчило жизнь автомобилистам. Цифровые контроллеры сдерживают разгон авто и крутящего момента. А периодически возникает ситуация, когда турбонаддуву не хватает мощности или нагнетатель засоряется, что влияет на динамику. Это чётко видно на другом графике – Saab.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector