Toyota разработала новый 1,3-литровый двигатель с самым высоким тепловым кпд в мире
Содержание:
- Тепловой двигатель
- Цикл Карно
- Типы систем питания
- Падение КПД и общие потери в электродвигателе
- Мощность и крутящий момент
- Роторно-волновой двигатель в сравнении с лопаточными и поршневыми машинами:
- От чего зависит КПД дизельного двигателя
- Роторно-волновой двигатель может применяться:
- Повышение эффективности электродвигателей
- Параметры КПД в электродвигателях
- Повышение эффективности электродвигателей
- КПД обратимой и необратимой тепловой машины
- Сравнение КПД двигателей – бензин и дизель
- Подробнее о потерях
- Краткая техническая информация
- Формула работы в физике
Тепловой двигатель
Двигатель, в котором происходит превращение внутренней энергии топлива, которое сгорает, в механическую работу.
Любой тепловой двигатель состоит из трех основных частей: нагревателя, рабочего тела (газ, жидкость и др.) и холодильника. В основе работы двигателя лежит циклический процесс (это процесс, в результате которого система возвращается в исходное состояние).
Прямой цикл теплового двигателя
Общее свойство всех циклических (или круговых) процессов состоит в том, что их невозможно провести, приводя рабочее тело в тепловой контакт только с одним тепловым резервуаром. Их нужно, по крайней мере, два. Тепловой резервуар с более высокой температурой называют нагревателем, а с более низкой – холодильником. Совершая круговой процесс, рабочее тело получает от нагревателя некоторое количество теплоты Q1 (происходит расширение) и отдает холодильнику количество теплоты Q2, когда возвращается в исходное состояние и сжимается. Полное количество теплоты Q=Q1-Q2, полученное рабочим телом за цикл, равно работе, которую выполняет рабочее тело за один цикл.
Обратный цикл холодильной машины
При обратном цикле расширение происходит при меньшем давлении, а сжатие — при большем. Поэтому работа сжатия больше, чем работа расширения, работу выполняет не рабочее тело, а внешние силы. Эта работа превращается в теплоту. Таким образом, в холодильной машине рабочее тело забирает от холодильника некоторое количество теплоты Q1 и передает нагревателю большее количество теплоты Q2.
Цикл Карно
В тепловых двигателях стремятся достигнуть наиболее полного превращения тепловой энергии в механическую. Максимальное КПД.
На рисунке изображены циклы, используемые в бензиновом карбюраторном двигателе и в дизельном двигателе. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30%, у дизельного двигателя – порядка 40 %.
Французский физик С.Карно разработал работу идеального теплового двигателя. Рабочую часть двигателя Карно можно представить себе в виде поршня в заполненном газом цилиндре. Поскольку двигатель Карно — машина чисто теоретическая, то есть идеальная, силы трения между поршнем и цилиндром и тепловые потери считаются равными нулю. Механическая работа максимальна, если рабочее тело выполняет цикл, состоящий из двух изотерм и двух адиабат. Этот цикл называют циклом Карно.
участок 1-2: газ получает от нагревателя количество теплоты Q1 и изотермически расширяется при температуре T1участок 2-3: газ адиабатически расширяется, температура снижается до температуры холодильника T2участок 3-4: газ экзотермически сжимается, при этом он отдает холодильнику количество теплоты Q2участок 4-1: газ сжимается адиабатически до тех пор, пока его температура не повысится до T1.Работа, которую выполняет рабочее тело — площадь полученной фигуры 1234.
Функционирует такой двигатель следующим образом:
1. Сначала цилиндр вступает в контакт с горячим резервуаром, и идеальный газ расширяется при постоянной температуре. На этой фазе газ получает от горячего резервуара некое количество тепла.2. Затем цилиндр окружается идеальной теплоизоляцией, за счет чего количество тепла, имеющееся у газа, сохраняется, и газ продолжает расширяться, пока его температура не упадет до температуры холодного теплового резервуара.3. На третьей фазе теплоизоляция снимается, и газ в цилиндре, будучи в контакте с холодным резервуаром, сжимается, отдавая при этом часть тепла холодному резервуару.4. Когда сжатие достигает определенной точки, цилиндр снова окружается теплоизоляцией, и газ сжимается за счет поднятия поршня до тех пор, пока его температура не сравняется с температурой горячего резервуара. После этого теплоизоляция удаляется и цикл повторяется вновь с первой фазы.
КПД цикла Карно не зависит от вида рабочего тела
для холодильной машины
В реальных тепловых двигателях нельзя создать условия, при которых их рабочий цикл был бы циклом Карно. Так как процессы в них происходят быстрее, чем это необходимо для изотермического процесса, и в то же время не настолько быстрые, чтоб быть адиабатическими.
Типы систем питания
Карбюраторный вариант предполагает смешивание воздуха и бензина во впускном трубопроводе карбюратора. В последнее время выпуск таких вариантов двигателей существенно снижается из-за несущественной экономичности подобных двигателей, их несоответствия экологическим нормам современности.
В вариантах впрысковых двигателей подача топлива происходит с помощью одного инжектора (форсунки) в центральный трубопровод.
В случае распределительного впрыска топливо попадает внутрь двигателя несколькими инжекторами. В таком случае увеличивается максимальная мощность, что существенно увеличивает КПД дизельного двигателя.
При этом снижаются расходы бензина и токсичность обработанных газов за счет фиксированной дозировки топлива электронными системами управления автомобильным двигателем.
Рассуждая над тем, каков КПД современного дизельного двигателя, необходимо знать о системе впрыска бензиновой смеси в камеру хранения. Если подача топлива осуществляется порциями, это гарантирует работу двигателя на обедненных смесях, что помогает снижать расход топлива, уменьшать выброс в атмосферу вредных газов.
Падение КПД и общие потери в электродвигателе
Существует множество негативных факторов, под влиянием которых складывается количество общих потерь в электрических двигателях. Существуют специальные методики, позволяющие заранее их определить. Например, можно определить наличие зазора, через который мощность частично подается из сети к статору, и далее — на ротор.
Потери мощности, возникающие в самом стартере, состоят из нескольких слагаемых. В первую очередь, это потери, связанные с и частичным перемагничиванием сердечника статора. Стальные элементы оказывают незначительное влияние и практически не принимаются в расчет. Это связано со скоростью вращения статора, которая значительно превышает скорость магнитного потока. В этом случае ротор должен вращаться в строгом соответствии с заявленными техническими характеристиками.
Значение механической мощности вала ротора ниже, чем электромагнитная мощность. Разница составляет количество потерь, возникающих в обмотке. К механическим потерям относятся трения в подшипниках и щетках, а также действие воздушной преграды на вращающиеся части.
Для асинхронных электродвигателей характерно наличие дополнительных потерь из-за наличия зубцов в статоре и роторе. Кроме того, в отдельных узлах двигателя возможно появление вихревых потоков. Все эти факторы в совокупности снижают КПД примерно на 0,5% от номинальной мощности агрегата.
При расчете возможных потерь используется и формула КПД двигателя, позволяющая вычислить уменьшение этого параметра. Прежде всего учитываются суммарные потери мощности, которые напрямую связаны с нагрузкой двигателя. С возрастанием нагрузки, пропорционально увеличиваются потери и снижается коэффициент полезного действия.
В конструкциях асинхронных электродвигателей учитываются все возможные потери при наличии максимальных нагрузок. Поэтому диапазон КПД этих устройств достаточно широкий и составляет от 80 до 90%. В двигателях повышенной мощности этот показатель может доходить до 90-96%.
Коэффициент полезного действия это характеристика эффективности работы, какого либо устройства или машины. КПД определяется как отношение полезной энергии на выходе системы к общему числу энергии подведенной к системе. КПД величина безразмерная и зачастую определяется в процентах.
Формула 1 — коэффициент полезного действия
Где—A полезная работа
—Q суммарная работа, которая была затрачена
Любая система, совершающая какую либо работу, должна из вне получать энергию, с помощью которой и будет совершаться работа. Возьмем, к примеру, трансформатор напряжения. На вход подается сетевое напряжение 220 вольт, с выхода снимается 12 вольт для питания, к примеру, лампы накаливания. Так вот трансформатор преобразует энергию на входе до необходимого значения, при котором будет работать лампа.
Но не вся энергия, взятая от сети, попадет к лампе, поскольку в трансформаторе существуют потери. Например, потери магнитной энергии в сердечнике трансформатора. Или потери в активном сопротивлении обмоток. Где электрическая энергия будет переходить в тепловую не доходя до потребителя. Эта тепловая энергия в данной системе является бесполезной.
Поскольку потерь мощности избежать невозможно в любом системе то коэффициент полезного действия всегда ниже единицы.
КПД можно рассматривать как для всей системы целиком, состоящей из множество отдельных частей. Так и определять КПД для каждой части в отдельности тогда суммарный КПД будет равен произведению коэффициентов полезного действия всех его элементов.
В заключение можно сказать, что КПД определяет уровень совершенства, какого либо устройства в смысле передачи или преобразования энергии. Также говорит о том, сколько энергии подводимой к системе расходуется на полезную работу.
Мощность и крутящий момент
Когда показатели рабочего объема одинаковые, мощность атмосферного бензинового двигателя выше, но достигается только при более высоких оборотах. Агрегат нужно сильнее «крутить», при этом потери возрастают, соответственно увеличивается расход топлива. Кроме этого, стоит упомянуть крутящий момент, под воздействием которого повышается сила, которая передается от двигателя на колеса и способствует движению автомобиля. Бензиновые двигатели выходят на максимальный уровень крутящего момента лишь высоких оборотах.
Атмосферный дизель с такими же параметрами достигает пика крутящего момента лишь при низких оборотах. Это способствует меньшему расходу топлива, необходимого для выполнения работы, в результате чего, КПД более высокий и топливо расходуется экономнее.
В равнении с бензином, дизельное топливо образует больше тепла, так как температура сгорания дизтоплива значительно выше, что способствует более высокой детонационной стойкости. Получается, у дизельного мотора полезная работа, произведенная на конкретном количестве топлива гораздо больше.
Роторно-волновой двигатель в сравнении с лопаточными и поршневыми машинами:
ДВС | ГТУ | Роторно-волновой двигатель |
Полный цикл рабочего тела осуществляется в одном цилиндре (вспомогательные такты заставляют конструировать органы газораспределения) | Процессы цикла распределены между отдельными агрегатами (отсутствие органов газораспределения) | Процессы цикла распределены между отдельными агрегатами (отсутствие органов газораспределения) |
Высокое давление и температура сгорания топливо-воздушной смеси | Низкое давление и температура сгорания топливо-воздушной смеси | Высокое давление и температура сгорания топливо-воздушной смеси |
Оптимальная работа при а (коэфф. избытка воздуха), близких к 1. | Оптимальная работа с а от 3+5 и выше | Оптимальная работа при а , близких к 1 |
‘Хорошая экономичность | Низкая экономичность | Высокая экономичность |
Оптимальный диапазон реализуемых мощностей от 0,1 до 1000 кВт | Оптимальная мощность от 1000 до 100000 кВт | Оптимальная мощность от 1 до 100000 кВт |
Каждый тип объемной машины работает на своем сорте топлива | Потребляет любой вид жидкого или газообразного топлива | Потребляет любое жидкое, газообразное, твердое распыленное топливо |
Двигатель работает с охлаждением | Двигатель работает без охлаждения | Двигатель работает без охлаждения |
Работа сопровождается неполным расширением отработанных газов | Полное расширение отработанных газов | Полное расширение отработанных газов |
Эффективное глушение выхлопа | Неэффективное глушение выхлопа | Отсутствие необходимости глушениявьшюпа |
Высокий вес силовой установки: 1+20 кг/кВт | Низкий вес силовой установки: до 0,1 кг/кВт | Вес силовой установки в пределах 0,1+0,25 кг/кВт |
При движении звеньев механизма в цепи присутствуют «мертвые точки». Для их преодоления устанавливается маховик | Отсутствие «мертвых точек» при движении механизма | Отсутствие «мертвых точек» при движении механизма |
Неполное уравновешивание инерционных сил и их моментов | Неуравновешенных сил и моментов не возникает | Полное уравновешивание инерционных сил, или вообще неуравновешенных сил не возникает |
Большие потери на трение (15+20%) | Низкие потери на трение (2+4%) | Низкие потери на трение (3+6%) |
Выбраны резервы роста эффективного КПД | Выбраны резервы роста эффективного КПД | Существует тенденция роста эффективного кпд |
От чего зависит КПД дизельного двигателя
Если сравнивать эффективность бензинового и дизельного моторов, выяснится, что второй обладает лучшими показателями:
- замечено, что, бензиновые двигатели преобразуют только одну четвертую часть использованной энергии в механическую работу;
- в то время, как дизельные – 40% соответственно;
- при установке турбонаддува в дизеле, КПД газотурбинного двигателя возрастает до 50 и более процентов.
Конструкция и принцип работы дизелей способствуют наибольшей эффективности в сравнении с карбюраторными двигателями. Причины лучшего КПД дизельного двигателя:
- Более высокий показатель степени сжатия.
- Воспламенение топлива происходит по другому принципу.
- Корпусные детали нагреваются меньше.
- Благодаря меньшему количеству клапанов, снижены расходы энергии на преодоление сил трения.
- В конструкции дизеля отсутствуют привычные свечи, катушки зажигания, на которые требуется дополнительная энергия от электрогенератора.
- Коленчатый вал дизеля раскручивается с меньшими оборотами.
В сравнении с дизелями, электрические двигатели считаются более эффективными. Двигатель с самым большим КПД – это электрический. При создании более долговечных аккумуляторных батарей, которым не страшны морозы, автомобильная промышленность постепенно перейдет на выпуск электромобилей в больших количествах.
Роторно-волновой двигатель может применяться:
– в легких вертолетах, самолетах и дирижаблях;
– в быстроходных катерах, экранопланах;
– в мощных вездеходах, передвижных электростанциях;
– в приводном оборудовании для нефтегазового комплекса.
карта сайта
автомобильный двигатель на катеревысокие обороты при запуске двигателявысокий кпд теплового двигателягазовые турбины авиационных двигателейгазовый и бензиновый двигателидвигатели работающие на газовом топливедля катера купить с высоким кпддвигатель на приору 16 клапанов новыйдвигатель ваз 2112 16 клапанов цена новыйновый двигатель ваз 2110 8 клапанов ценагазовое оборудование на дизельный двигательроторно поршневой двигатель купитьроторный двигатель внутреннего сгораниястационарные двигатели для катеров катера купитьхарактеристика газового двигателя роторного двигателякупить двигатель ваз 2107 инжектор цена новыйв цилиндре двигателя внутреннего сгорания давлениедвигатель внутреннего сгорания характеристики кпдработа совершенная двигателем внутреннего сгораниякупить двигатель приора 16 клапановкупить новый двигатель фольксвагенсвечи для газовых двигателейустройство газового двигателямощность двигателя катерановые двигатели на автомобилирабочие циклы система седунова вихрова паровой самый
Коэффициент востребованности
3 238
Повышение эффективности электродвигателей
Электрические двигатели обладают некоторыми недостатками, которые плохо влияют на эффективность работы. Это слабый пусковой момент, высокий пусковой ток и несогласованность механического момента вала с механической нагрузкой. Это приводит к тому, что КПД устройства снижается.
Для повышения эффективности стараются обеспечить нагрузку двигателя до 75% и выше и увеличивать коэффициенты мощности. Также есть специальные приборы для регулирования частоты подаваемого тока и напряжения, что тоже приводит к повышению эффективности и росту КПД.
Одним из самых популярных приборов для увеличения КПД электродвигателя является устройство плавного пуска, которое ограничивает скорость роста пускового тока. Также уместно использовать и частотные преобразователи для изменения скорости вращения мотора путем изменения частоты напряжения. Это приводит к снижению расхода электроэнергии и обеспечивает плавный пуск двигателя, высокую точность регулировки. Также увеличивается пусковой момент, а при переменной нагрузке стабилизируется скорость вращения. В результате эффективность электродвигателя повышается.
Параметры КПД в электродвигателях
Основная задача электрического двигателя сводится к преобразованию электрической энергии в механическую. КПД определяет эффективность выполнения данной функции. Формула КПД электродвигателя выглядит следующим образом:
n = p2/p1
В данной формуле p1 — это подведенная электрическая мощность, p2 — полезная механическая мощность, которая вырабатывается непосредственно двигателем. Электрическая мощность определяется формулой: p1=UI (напряжение умноженное на силу тока), а значение механической мощности по формуле P=A/t (отношение работы к единице времени). Так выглядит расчет КПД электродвигателя. Однако это самая простая его часть. В зависимости от предназначения двигателя и сферы его применения, расчет будет отличаться и учитывать многие другие параметры. На самом деле формула КПД электродвигателя включает намного больше переменных. Выше был приведен самый простой пример.
Повышение эффективности электродвигателей
Электрические двигатели обладают некоторыми недостатками, которые плохо влияют на эффективность работы. Это слабый пусковой момент, высокий пусковой ток и несогласованность механического момента вала с механической нагрузкой. Это приводит к тому, что КПД устройства снижается.
Для повышения эффективности стараются обеспечить нагрузку двигателя до 75% и выше и увеличивать коэффициенты мощности. Также есть специальные приборы для регулирования частоты подаваемого тока и напряжения, что тоже приводит к повышению эффективности и росту КПД.
Одним из самых популярных приборов для увеличения КПД электродвигателя является устройство плавного пуска, которое ограничивает скорость роста пускового тока. Также уместно использовать и частотные преобразователи для изменения скорости вращения мотора путем изменения частоты напряжения. Это приводит к снижению расхода электроэнергии и обеспечивает плавный пуск двигателя, высокую точность регулировки. Также увеличивается пусковой момент, а при переменной нагрузке стабилизируется скорость вращения. В результате эффективность электродвигателя повышается.
КПД обратимой и необратимой тепловой машины
КПД необратимого теплового двигателя всегда меньше, чем КПД обратимой машины, при работе машин с одинаковыми нагревателем и холодильником.
Рассмотрим тепловую машину, состоящую из:
- цилиндрического сосуда, который закрыт поршнем;
- газа под поршнем;
- нагревателя;
- холодильника.
В ней:
- Газ получает некоторое количество теплоты $Q_1$ от нагревателя.
- Газ расширяется и толкает поршень, выполняет работу $A_+0$.
- Газ сжимают, холодильнику передается теплота $Q_2$.
- Работа совершается над рабочим телом $A_-
Работа, которую выполнят рабочее тело за цикл, равна:
$A=A_+-A_-(6).$
Для выполнения условия обратимости процессов их надо проводить очень медленно. Кроме этого необходимо, чтобы отсутствовало трение поршня о стенки сосуда.
Обозначим работу, совершаемую за один цикл обратимым тепловым двигателем как $A_{+0}$.
Выполним тот же цикл с большой скоростью и при наличии трения. Если провести расширение газа быстро, давление его около поршня будет меньше, чем если газ расширяют медленно, поскольку возникающее под поршнем разрежение распространяется на весь объем с конечной скоростью. В этой связи, работа газа в необратимом увеличении объема меньше, чем в
обратимом:
$A_{+n}$
Если выполнить сжатие газа быстро давление около поршня больше, чем при медленном сжатии. Значит, величина отрицательной работы рабочего тела в необратимом сжатии больше, чем в обратимом:
$A_{-n}A_{+o}$.
Получим, что работа газа в цикле $A$ необратимой машины, вычисляемая по формуле (5), выполняемая за счет теплоты, полученной от нагревателя будет меньше, чем работа, выполненная в цикле обратимым тепловым двигателем:
$A_n$
Трение, имеющееся в необратимом тепловом двигателе, ведет к переходу части работы выполненной газом в теплоту, что уменьшает КПД двигателя.
Так, можно сделать вывод о том, что коэффициент полезного действия теплового двигателя обратимой машины больше, чем необратимой.
Замечание 2
Тело, с которым обменивается теплом рабочее тело, станем называть тепловым резервуаром.
Обратимая тепловая машина совершает цикл, в котором имеются участки, где рабочее тело совершает обмен теплотой с нагревателем и холодильником. Процесс обмена теплом является обратимым, только если при получении теплоты и возвращении ее при обратном ходе, рабочее тело обладает одной и той же температурой, равной температуре теплового резервуара. Если говорить более точно, то температура тела, которое получает теплоту, должная быть на очень малую величину менее температуры резервуара.
Таким процессом может быть изотермический процесс, который происходит при температуре резервуара.
Для функционирования теплового двигателя у него должно быть два тепловых резервуара (нагреватель и холодильник).
Обратимый цикл, который выполняется в тепловом двигателе рабочим телом, должен быть составлен из двух изотерм (при температурах тепловых резервуаров) и двух адиабат.
Адиабатические процессы происходят без обмена теплом. В адиабатных процессах происходит расширение и сжатие газа (рабочего тела).
Сравнение КПД двигателей – бензин и дизель
Если сравнить КПД дизельного и бензинового моторов – эффективнее из них, конечно, дизель, причина в следующем:
- Бензиновый агрегат преобразует лишь 25 % энергии в механическую, в то же время дизельный до 40%.
- Дизельный двигатель, оснащенный турбонаддувом, достигнет 50-53% КПД, а это уже существенно.
Так в чем заключается эффективность дизельного мотора? Все очень просто – не смотря на практически идентичный тип работы (оба мотора являются ДВС) дизель функционирует намного эффективнее. Топливо у него воспламеняется совсем по другому принципу, а также у него большее сжатие. Дизель меньше нагревается, соответственно, происходит экономия на охлаждении, так же у него меньше клапанов (значительная экономия на трении). Кроме этого, у такого агрегата нет свечей, катушек, а значит, нет и энергетических затрат от генератора. Функционирует дизельный двигатель с меньшими оборотами (коленвал не приходится раскручивать). Все это его делает чемпионом по КПД.
Подробнее о потерях
Если сравнивать бензиновый и дизельный и ДВС, можно сказать что КПД бензинового мотора находится на более низком уровне – в пределах 20-25 %. Это обусловлено рядом причин. Если, к примеру, взять поступающее в ДВС топливо и «перевести» его в проценты, то получится как бы «100% энергии», которая передается мотору, а дальше, потери КПД:
- Топливная эффективность. Далеко не все потребляемое топливо сгорает, его большая часть уходит с отработанными газами. Потери на этом уровне составляют до 25% КПД. Сегодня, конечно, топливные системы усовершенствуются, появился инжектор, но и это не решает проблему на 100%.
- Второе – это тепловые потери. Часть тепла уходит из ДВС с выхлопными газами, кроме этого, мотор прогревает себя и ряд других элементов: свой корпус, жидкость в ДВС, радиатор. На все это приходится еще в пределах 35%.
- Третье, на что расходуется КПД – это механические потери. К ним относятся составляющие силового агрегата, где есть трение: шатуны, кольца, всякого рода поршни и т.д. Также сюда можно отнести потери, обусловленные нагрузкой от генератора, к примеру, чем больше электричества он вырабатывает, тем сильнее он притормаживает вращение коленвала. Конечно, различные смазки для ДВС играют свою роль, но все-таки полностью проблему трения они не решают, а это еще дополнительные потери до 20 % КПД.
Таким образом, в остатке КПД не более 20%. Сегодня существует бензиновые варианты, у которых показатель КПД несколько увеличен – до 25%, но, к сожалению, их не так много. К примеру, если автомобиль расходует 10 л топлива на 100 км, то всего лишь 2 л уйдут на работу двигателя, а все остальные – это потери.
Конечно, есть вариант увеличить мощность за счет расточки головки, но к нему прибегают довольно редко, поскольку это вносит определенные изменения в конструкцию ДВС.
Конструкторы постоянно стремятся увеличить КПД как бензинового, так и дизельного агрегатов. Увеличение количества выпускных/впускных клапанов, управление топливным впрыском (электронное), дроссельная заслонка, активное использование систем изменения фаз газораспределения и другие эффективные решения позволяют значительно повысить КПД. Конечно, в большей степени это относится к дизельным установкам.
С помощью таких усовершенствований современный дизель способен практически полностью сжечь дизтопливо в цилиндре, выдав максимальный показатель крутящего момента. Именно низкие обороты означают незначительные потери во время трения и возникающее в результате этого сопротивление. По этой причине дизельный двигатель является одним из производительных и экономичных, КПД которого довольно часто превышает отметку в 50%.
Коэффициент полезного действия (КПД) – широко используемая характеристика эффективности некоторой системы или устройства. В нашем случае этой системой выступает двигатель внутреннего сгорания. Казалось бы, о какой эффективности может идти речь в мире современных моторов, разве она не равна 100 процентам? Но оказывается, как нет в нашем мире идеально черного или белого, так нет и машины, у которой вся энергия, получаемая от горения топлива, полностью переходит в механическую энергию, а последняя в свою очередь в полезную энергию прижимающую пилота автомобиля в его кресло.
Краткая техническая информация
А перед тем, как пытаться изучать достоинства и недостатки чего-либо, просто-таки необходимо хотя бы в общих чертах понять, как оно устроено и работает. Посему, сначала предлагаем вкратце познакомиться с некоторыми конструктивными особенностями бензинового мотора, принципом его работы и отличиями от дизельного аналога.
Отдельно надо отметить, что бензиновых двигателей внутреннего сгорания бывает несколько разновидностей. В частности, они классифицируются по таким признакам, как:
- количество рабочих тактов (двухтактные и четырехтактные);
- тип смазки (смешанный и раздельный);
- тип охлаждения (воздушное и жидкостное);
- количество цилиндров;
- расположение цилиндров (рядные, V-образные, оппозитные);
- способ приготовления топливовоздушной смеси (карбюратор, инжектор);
- способ наполнения цилиндров приготовленной смесью (атмосферные и с турбонаддувом).
Так вот, в большинстве серийных легковых автомобилей применяются четырехтактные, четырехцилиндровые, рядные, атмосферные, инжекторные двигатели с жидкостным охлаждением и раздельным типом смазки. В современных моделях разными могут быть такие параметры, как количество цилиндров и их расположение, а также способ наполнения цилиндров горючей смесью. Все остальные признаки — повторяются. Отдельной категорией бензиновых двигателей идут роторные силовые агрегаты. Но они не получили широкого распространения, потому их достоинства и недостатки учитывать тут не будем.
Рассмотрим кратко, как работает среднестатистический автомобильный двигатель на бензине. Полезную работу силовой агрегат выполняет в процессе повторяющихся циклов, каждый из которых состоит из четырех тактов. “Заглянем” в один цилиндр, дабы узнать, что там происходит на протяжении рабочего цикла и попутно сравним с происходящими процессами в дизельном двигателе:
- Впуск. Поршень по инерции (после предыдущего цикла) двигается вниз, создавая разрежение в камере сгорания. Одновременно с этим открываются впускные клапаны, и в цилиндр врывается смешанный с воздухом бензин. В дизельном моторе происходит примерно то же самое, только через клапаны всасывается один воздух. Солярка подается под давлением через форсунку, соответственно, горючая смесь готовится непосредственно в цилиндре.
- Сжатие. Впускные клапаны закрываются, а поршень (по все той же инерции) двигается вверх. Топливовоздушная смесь сжимается, еще лучше смешивается и прогревается (от давления). В дизельном моторе на данном этапе происходит все то же самое. Разница заключается только в давлении и температуре — здесь они выше.
- Рабочий ход. Когда поршень после предыдущего такта подходит к верхней мертвой точке, между электродами свечи зажигания проскакивает искра. Смесь воспламеняется, в результате чего расширяется и давит на поршень. Тот двигается вниз, выполняя нужную нам полезную работу. В дизельном моторе никакой искры нет, поскольку и свечи там никакой не предусмотрено. Топливовоздушная смесь воспламеняется сама за счет саморазогрева под воздействием высокого давления.
- Выпуск. Возвращаясь вверх после рабочего хода, поршень “выгоняет” отработанные газы (дым, остатки несгоревшего топлива, углекислый газ) через открывающиеся в это время выпускные клапаны. Далее цикл повторяется.
Сразу же отметим важные для нашей темы моменты. Во-первых, чтобы подать топливо в цилиндр бензинового двигателя, не обязательно создавать для этого “нечеловеческое” давление. Во-вторых, за счет более высокой степени сжатия и создаваемого давления (это далеко не одно и то же) топливо в дизельном моторе лучше смешивается и эффективнее сгорает, чем в бензиновом. В-третьих, чтобы поджечь бензин, нужна целая система зажигания, которой у моторов на солярке нету. В-четвертых, чтобы преодолеть то самое высокое давление на такте сжатия в дизеле, нужно намного больше “усилий”, чем в случае с бензином.
В свете уже только этой информации можно вывести несколько существенных плюсов и минусов бензинового мотора. Так что, приступим, а остальную нужную инфу будем добавлять по мере надобности.
Формула работы в физике
Для механической работы формула несложна: A = F x S. Если расшифровать, она равна приложенной силе на путь, на протяжении которого эта сила действовала. Например, мы поднимаем груз массой 15 кг на высоту 2 метра. Механическая работа по преодолению силы тяжести будет равна F x S = m x g x S. То есть, 15 x 9,8 x 2 = 294 Дж. Если речь идет о количестве теплоты, то A в этом случае равняется изменению количества теплоты. Например, на плите нагрели воду. Ее внутренняя энергия изменилась, она увеличилась на величину, равную произведению массы воды на удельную теплоемкость на количество градусов, на которое она нагрелась.