Устройство планетарного механизма – Планетарная передача — Википедия

Содержание

Планетарная передача — Википедия

Планетарная передача с остановленным водилом по сути является двухступенчатой зубчатой передачей с неподвижными осями колес. Планетарная передача (солнечная шестерня остановлена) Планетарная передача (коронная шестерня остановлена) Схема эпициклически движущейся планеты

Планетарная передача (далее — ПП) — механическая передача вращательного движения, за счёт своей конструкции способная в пределах одной геометрической оси вращения изменять, складывать и раскладывать подводимые угловые скорости и/или крутящий момент. Обычно является элементом трансмиссии различных технологических и транспортных машин.

Конструктивно ПП всегда представляет собой набор взаимозацепленных зубчатых колёс (не менее 4), часть из которых (не менее 2) имеет общую геометрическую неподвижную ось вращения, а другая часть (также, не менее 2) имеет подвижные оси вращения, концентрически вращающиеся на так называемом «водиле» вокруг неподвижной. Зубчатые колёса на неподвижной оси всегда связаны друг с другом не напрямую, а через зубчатые колёса на подвижных осях, а ввиду того, что вторые способны не только вращаться относительно первых, но и обкатывать их, тем самым передавая поступательное движение на водило, все звенья ПП, на которые можно подавать/снимать мощность, получают возможность вращаться дифференциально, с тем лишь условием, что угловая скорость любого такого звена не абсолютно хаотична, а определяется угловыми скоростями всех остальных звеньев. В этом плане ПП похожа на планетарную систему, в которой скорость каждой планеты определяется скоростями всех остальных планет системы. Дифференциальный принцип вращения всей системы, а также то, что в своём каноническом виде набор зубчатых колёс, составляющих ПП, собран в некоем подобии солнца и эпициклически движущихся по орбите планет, даёт данной механической передаче такие присущие только ей интернациональные определения, как

планетарная, дифференциальная
(от лат. differentia — разность, различие) или эпициклическая, каждое из которых в данном случае есть синонимы.

С точки зрения теоретической механики планетарная передача — это механическая система с двумя и более степенями свободы. Эта особенность, являющаяся прямым следствием конструкции, есть важное отличие ПП от каких-либо других передач вращательного движения, всегда имеющих только одну степень свободы. И эта особенность наделяет саму ПП тем важным качеством, что в аспекте воздействия на угловые скорости вращения ПП может не только редуцировать эти скорости, но и складывать и раскладывать их, что, в свою очередь, делает её основным механическим исполнительным узлом не только различных планетарных редукторов, но таких устройств, как дифференциалы и суммирующие ПП.

Планетарная передача и планетарный механизм[править | править код]

В русскоязычной инженерной терминологии термины планетарная передача (далее — ПП) и планетарный механизм (далее — ПМ) зачастую предполагаются как синонимы. Отличия в том, что термин ПП обычно используется в контексте принципиального понимания устройства той или иной передачи вращательного движения, особенно если устройство такой передачи не очевидно (скрыто корпусом/картером) или такая передача обладает определёнными уникальными свойствами, присущими только планетарной, и на этом надо акцентировать внимание. А термин ПМ используется для обозначения конкретного зубчато-рычажного механизма, причём существуют критерии, позволяющие чётко описать ПМ как сборочный узел в составе более крупного узла или агрегата и определить, сколько и каких именно использовано ПМ в конкретной передаче вращательного движения.

Состав планетарного механизма[править | править код]

Конструкция ПП/ПМ основана на различных комбинациях из трёх основных и нескольких одинаковых вспомогательных звеньев. Три основные звена с одной общей осью вращения — два центральных зубчатых колеса и водило. Вспомогательные звенья — набор одинаковых зубчатых колёс на подвижных осях вращения и подшипники.

  • Малое центральное зубчатое колесо с внешними зубьями называется солнечной шестернёй или солнцем (С).
  • Большое центральное зубчатое колесо с внутренними зубьями называется коронной, эпициклической шестернёй или эпициклом (Э).
  • Водило (В) является основой ПМ — это неотъемлемая деталь абсолютно любого ПМ и краеугольный камень всей идеи передачи вращения через планетарную систему с дифференциальной связью. Водило представляет собой рычажный механизм — обычно такую пространственную вилку, ось «основания» которой совпадает с осью самого ПМ, а оси «зубцов» с установленными на них сателлитами концентрически вращаются вокруг неё в плоскости/плоскостях расположения центральных зубчатых колёс. Оси «зубцов» — это и есть так называемые подвижные оси или оси сателлитов
  • Сателлиты () представляют собой зубчатые колёса (или группы колёс) с внешними зубьями. При этом сателлиты находятся в одновременном и постоянном зацеплении с обоими центральными зубчатыми колёсами ПМ. Количество сателлитов в ПМ обычно составляет от двух до шести (чаще всего — три, так как только при трёх сателлитах нет нужды в специальных уравновешивающих механизмах) и точного значения для функциональности ПМ не имеет. В различных ПМ применяются сателлиты одновенцовые (одно простое зубчатое колесо), двухвенцовые (два соосных зубчатых колеса с общей ступицей), трёхвенцовые и так далее. Также сателлиты могут быть парными — то есть, располагающимимся на осях одного водила и зацепленными в паре.

Зубчатые колёса, составляющие ПМ, могут быть любого известного типа: прямозубые, косозубые, шевронные, червячные. Тип зацепления в общем случае не важен и на принципиальную работу ПП влияния не оказывает.

В любом ПМ оси вращения центральных зубчатых колёс и водила всегда совпадают. Однако это не значит, что оси сателлитов всегда будут параллельны основной оси. Как и в случае с простыми зубчатыми передачами, здесь возможны варианты параллельных, скрещивающихся и пересекающихся осей. Пример второго варианта — межколёсный дифференциал с коническими зубчатыми колёсами. Пример третьего варианта — самоблокирующийся дифференциал Torsen с червячным зацеплением.

Любой ПМ, независимо простой он или сложный, плоский или пространственный, для своей работоспособности должен иметь одно водило с сателлитами и не менее двух любых центральных зубчатых колёс. Под определением «два любые» подразумевается, что это могут быть не только одно солнце и один эпицикл, но и два солнца и ни одного эпицикла, или два эпицикла и ни одного солнца. Три звена, в том числе водило, есть необходимое и достаточное условие для того, чтобы ПМ мог выполнять функции передачи мощности и сложения/разложения потоков: работать в качестве редуктора (в том числе многоскоростного), в качестве дифференциала или суммирующей ПП. Также три звена есть основа такого русскоязычного технического термина, как

Трёхзвенный Дифференциальный Механизм (или ТДМ).

Формально, механизмы, состоящие всего из двух звеньев — из водила и всего лишь одного центрального зубчатого колеса — также могут именоваться планетарными. Фактически же, такие двухзвенные ПМ трудно разумно приспособить для выполнения какой-либо работы: они не годятся для передачи мощности с одного основного звена на другое и лишь при определённых условиях могут работать как переусложнённая прямая передача. Увеличение числа основных звеньев одного ПМ в большую сторону — до 4 и более — возможно и формально и фактически, однако при этом такие ПМ не приобретают никаких новых свойств, хотя и получают больше теоретически доступных передаточных отношений и могут давать проектируемой ПП определённые компоновочные преимущества.

Простые и сложные ПМ, планетарный ряд[править | править код]

Схемы наиболее распространённых сложных планетарных механизмов

Критерием деления ПМ на простые и сложные является число составляющих его основных звеньев (именно основных, а число сателлитов — не в счёт). Простой ПМ имеет всего три основных звена: одно водило и два любых центральных зубчатых колеса. Кинематика допускает всего-лишь 7 (семь!) ПМ, подпадающих под это условие: один наиболее распространённый и всем известный, так называемый «элементарный», с набором одновенцовых сателлитов схемы ; три ПМ с двухвенцовыми саттелитами (, , ) и три ПМ с парными взаимозацепленными сателлитами (СВЭ, СВС, ЭВЭ)).

Сложных ПМ гораздо больше чем простых. Их точное число не определено ввиду отсутствия такой нужды, а наиболее распространённые из них приведены на рисунке. Точно так же как и простые ПМ, сложные имеют всего одно водило, но центральных зубчатых колёс может быть три и более. При этом в составе сложного ПМ всегда умозрительно можно выделить несколько простых ПМ (конкретно: три в четырёхзвенном и шесть в пятизвенном), каждый из которых в себя включает два каких-то центральных зубчатых колеса и одно общее водило.

Каждый набор из центральных зубчатых колёс и сателлитов, вращающихся в одной плоскости, образует так называемый планетарный ряд. Простой ПМ с набором одновенцовых сателлитов является однорядным. Все три простые ПМ с двухвенцовыми сателлитами — двухрядные. ПМ с парными взаимозацепленными сателлитами схемы СВЭ — однорядный; схем СВС и ЭВЭ — двухрядные. Таким образом, все простые ПМ могут быть или однорядными или двухрядными. Сложные ПМ, в свою очередь, могут быть двух, трёх и четырёхрядные. Верхнее число рядов в сложном ПМ формально не ограничено, хотя фактически уже пятирядные есть большая редкость, хотя в сборках из планетарных механизмов, применяющихся в многоступенчатых планетарных коробках передач, общее число рядов может быть пять и больше. Нередко термины ПМ и планетарный ряд предполагаются как синонимы, но, в общем случае, это неверно: даже если в отдельных случаях оба термина могут обозначать одно и то же, всегда следует помнить, что их смыл несколько разный.

Плоские и пространственные ПМ[править | править код]

Свободный дифференциал на основе простого плоского двухрядного ПМ с парными сателлитами Свободный дифференциал на основе пространственного ПМ с коническими шестернями

Наличие в составе одного ПМ более одного планетарного ряда не означает, что он является пространственным. Сколько бы ни было рядов, но если плоскости вращения всех составляющих каждый ряд зубчатых колёс параллельны, то такой ПМ будет оставаться плоским. Критерием отличия плоского ПМ от пространственного является наличие не просто более одной плоскости вращения составляющих его зубчатых колёс, но наличие непараллельных плоскостей их вращения. Плоскости вращения звеньев в пространственном ПМ не обязаны быть строго перпендикулярны друг-другу и могут находиться под любыми произвольными углами. Примером пространственного ПМ может служить конический симметричный дифференциал, наподобие применяющегося в приводе ведущих колёс автомобиля. А вот близкий по конструкции цилиндрический дифференциал, применяющийся там же и выполняющий точно такие же функции, будет оставаться плоским ПМ.

Пространственные ПМ по своему функционалу ничем не отличаются от аналогичных по составу плоских ПМ. Выбор того или иного ПМ в качестве основы конкретной ПП есть лишь вопрос экономики или конструкторских предпочтений. Тот же простой межколёсный дифференциал почти всегда выполнен на основе пространственного ПМ не потому, что что плоский не годится, а, скорее, по определённым компоновочным соображениям. Плюс, как это ни странно, пространственный ПМ для выполнения схожих функций может требовать меньшего количества шестерён и деталей вообще. Так, тот же межколёсный дифференциал в пространственном варианте требует всего лишь 4 одинаковые шестерни, из которых две пойдут на два солнца и две — на два саттелита. В случае же плоского варианта, таких шестерён потребуется как минимум шесть, а скорее всего — восемь, и при этом они обязательно будут двух разных типоразмеров.

2 степени свободы ПМ[править | править код]

Уникальной особенностью любого ПМ, отличающей его от всех прочих зубчатых передач, является наличие у него двух степеней свободы. Применительно к простому трёхзвенному ПМ это означает, что понимание угловой скорости вращения любого одного основного звена не даёт однозначного понимания угловых скоростей двух других основных звеньев, даже если известны все передаточные отношения внутри ПМ. Здесь все три основных звена находятся в дифференциальной связи друг с другом и для определения их угловых скоростей надо знать угловые скорости как минимум двух из них. В этом есть важное отличие ПМ от прочих зубчатых механизмов, в которых угловые скорости всех элементов связаны линейной зависимостью, а по угловой скорости одного элемента всегда можно точно определить угловые скорости всех остальных элементов, сколь много их бы не было. И в этом есть основа уникальных свойств, присущих любому ПМ: способность изменять угловые скорости на выходе при неизменных угловых скоростях на входе, способность делить и суммировать потоки мощности и всё это при постоянно зацепленных шестернях.

Любой ПМ, независимо от того, простой он или сложный, имеет фактически лишь две степени свободы. Для простого ПМ это подтверждается и визуальным наблюдением за работой такого механизма и уравнением Чёбышева. Для сложных ПМ это визуально не очевидно, а уравнение Чёбышева теоретически может допускать существование для таких ПМ трёх степеней свобод, что подразумевает наличие четырёх звеньев, находящихся в дифференциальной связи друг с другом. Но фактически такие сложные ПМ будут физически неработоспособны в тех практических задачах, ради которых они создаются, а все работоспособные сложные ПМ останутся двухстепенными. Независимо от числа основных звеньев любого работоспособного сложного ПМ, в нём, так же как и в простом ПМ, в дифференциальной связи друг с другом будет находиться только три основных звена, а остальные основные звенья, сколько бы их ни было, будут иметь линейную связь с каким-то одним из трёх вышеупомянутых. Попытки же создания сложных ПМ с тремя (и тем более, с четырьмя) фактическими степенями свободы считаются бесперспективными, а все работоспособные трёх- и четырёхстепенные ПП основаны на сборке последовательно взаимозацепленных двухстепенных ПМ.

Передаточное отношение[править | править код]

Планетарная передача в режиме повышения скорости. Водило (зелёное) вращается внешним источником. Усилие снимается с солнечной шестерни (жёлтая), в то время как кольцевая шестерня (красная) закреплена неподвижно. Красные метки показывают вращение входного вала на 45°.

Передаточное отношение такой передачи визуально определить достаточно сложно, в основном, потому что система может приводиться во вращение различными способами.

При использовании планетарной передачи в качестве редуктора один из трёх её основных элементов фиксируется неподвижно, а два других служат в качестве ведущего и ведомого. Таким образом, передаточное отношение будет зависеть от количества зубьев каждого компонента, а также от того, какой элемент закреплён.

Рассмотрим случай, когда водило зафиксировано, а мощность подводится через солнечную шестерню. В этом случае планетарные шестерни вращаются на месте со скоростью, определяемой отношением числа их зубьев относительно солнечной шестерни. Например, если мы обозначим число зубьев солнечной шестерни как S{\displaystyle S}, а для планетарных шестерён примем это число как P{\displaystyle P}, то передаточное отношение будет определяться формулой SP{\displaystyle {\frac {S}{P}}}, то есть если у солнечной шестерни 24 зуба, а у планетарных по 16, то передаточное отношение будет −2416{\displaystyle -{\frac {24}{16}}}, или −32{\displaystyle -{\frac {3}{2}}}, что означает поворот планетарных шестерён на 1,5 оборота в противоположном направлении относительно солнечной.

Далее вращение планетарных шестерён может передаваться кольцевой шестерне, с соответствующим передаточным числом. Если кольцевая шестерня имеет A{\displaystyle A} зубьев, то оно будет вращаться с соотношением PA{\displaystyle {\frac {P}{A}}} относительно планетарных шестерён. (В данном случае перед дробью нет минуса, так как при внутреннем зацеплении шестерни вращаются в одну сторону). Например, если на кольцевой шестерне 64 зуба, то относительно приведённого выше примера это отношение будет равно 1664{\displaystyle {\frac {16}{64}}}, или 14{\displaystyle {\frac {1}{4}}}. Таким образом, объединив оба примера, мы получим следующее:

  • Один оборот солнечной шестерни даёт −SP{\displaystyle -{\frac {S}{P}}} оборотов планетарных шестерён;
  • Один оборот планетарной шестерни даёт PA{\displaystyle {\frac {P}{A}}} оборотов кольцевой.

В итоге, если водило заблокировано, общее передаточное отношение системы будет равно −SA{\displaystyle -{\frac {S}{A}}}.

В случае, если закреплена кольцевая шестерня, а мощность подводится к водилу, передаточное отношение на солнечную шестерню будет меньше единицы и составит 1(1+AS){\displaystyle {\frac {1}{(1+{\frac {A}{S}})}}}.

Если закрепить кольцевую шестерню, а мощность подводить к солнечной шестерне, то мощность должна сниматься с водила. В этом случае передаточное отношение будет равно 1+AS{\displaystyle 1+{\frac {A}{S}}}. Это самое большое передаточное число, которое может быть получено в планетарной передаче. Такие передачи используются, например, в тракторах и строительной технике, где требуется большой крутящий момент на колёсах при невысокой скорости.

Всё вышесказанное можно описать следующими двумя уравнениями (выведены из условия отсутствия проскальзывания сопрягаемых шестерён и следовательно равенства дуг, проходимых точками, находящихся на окружностях, в единицу времени):

A(ωa−ωc)=PωpS(ωs−ωc)=−Pωp{\displaystyle {\begin{aligned}A\left(\omega _{a}-\omega _{c}\right)=P\omega _{p}\\S\left(\omega _{s}-\omega _{c}\right)=-P\omega _{p}\end{aligned}}}

Здесь ωa,ωc,ωp,ωs{\displaystyle \omega _{a},\omega _{c},\omega _{p},\omega _{s}} — угловые скорости соответственно: кольцевой шестерни, водила, планетарных шестерён относительно водила, и солнечной шестерни. Первое уравнение характеризует вращение водила относительно кольцевой шестерни, второе — солнечной шестерни относительно водила.

Если исключить из уравнений ωp{\displaystyle \omega _{p}} путём их сложения — получится одно уравнение: Aωa+Sωs=(A+S)ωc{\displaystyle A\omega _{a}+S\omega _{s}=(A+S)\omega _{c}}. Так как числа зубьев шестерён всегда удовлетворяют условию A=S+2P{\displaystyle A=S+2P} (исходя из простых геометрических соотношений, поскольку в диаметр коронной шестерни помещается диаметр солнечной шестерни и два диаметра сателлитов), по-другому это уравнение можно записать как:

(2+n)ωa+nωs−2(1+n)ωc=0{\displaystyle \left(2+n\right)\omega _{a}+n\omega _{s}-2\left(1+n\right)\omega _{c}=0}

Где n — это параметр передачи, равный n=SP{\displaystyle n={S \over P}}, то есть отношению чисел зубьев солнечной и планетарных шестерён.

В нижеуказанной таблице (указывающей выходные скорости различных типов планетарных передач в зависимости от их конструктивных особенностей) приняты следующие условные обозначения:

Схемы и выходные скорости планетарных передач
Схема Выходная скорость Схема Выходная скорость Схема Выходная скорость Схема Выходная скорость
n=n(1+zz){\displaystyle {\color {red}n}={\color {blue}n}(1+{\frac {z}{\color {red}z}})}

ru.wikipedia.org

коробка, механизм, шестерня, ряд и расчет

Планетарная передача — вид зубчатой передачи, применяемой в механических и автоматических трансмиссиях. Помимо преобразования вращения «планетарка» способна суммировать и раскладывать мощности. Зная о планетарном механизме: что это такое, как работает, по каким критериям оценивают редуктор, станет понятно устройство и характеристики АКПП. В случае поломки расчёт передачи поможет выбрать надёжный и долговечный механизм.

Устройство и принцип работы

Планетарный механизм — это конструкция из зубчатых колёс, перемещающихся относительно центра. По центральной оси расположены колёса разного диаметра:

  • малое солнечное с внешними зубцами;
  • большое коронное или эпицикл с внутренними зубцами.

Между колёсами передвигаются сателлиты. Их вращение напоминает движение планет Солнечной системы. Оси сателлитов механические соединены на водиле, которое вращается относительно центральной оси.

Устройство простого планетарного блока:

  • 1 эпицикл;
  • 1 солнечное колесо;
  • 1 водило.

Планетарный механизм собирают в каскады из двух и более звеньев на одном валу для получения широкого диапазона передач. Главной кинематической характеристикой зубчатой передачи является передаточное отношение.

Принцип работы планетарной коробки заключается в блокировке одного из основных элементов и передаче вращения через ведущее колесо. Для остановки элемента применяют тормозные ленты, блокировочные муфты, конические шестерни. Передаточное отношение меняется в зависимости от схемы закрепления. Описать принцип действия планетарного механизма удобнее на примере:

  1. Корона блокируется.
  2. Вал подаёт крутящий момент на солнце.
  3. Вращение солнца заставляет планеты обкатываться вместе с ним.
  4. Водило становится ведомым, сообщая пониженную передачу.

Управляя элементами простой «планетарки», получают разные характеристики:

Передача

Как работает планетарная коробка в АКПП

1

Солнце подаёт вращение на водило, корона двигается в противоположную сторону.

2

Корона подаёт вращение на водило, солнце зафиксировано.

3

Ведущее водило передаёт вращение солнцу. Корона заблокирована.

4

Водило двигает корону. Солнце зафиксировано.

Задний ход

Водило заблокировано. Солнечное колесо вращается, планеты обкатывают и двигают корону в противоположную сторону.

Кпд η простой передачи достигает 0,97.

Планетарный ряд с одной степенью свободы становится планетарной передачей. Две степени образуют дифференциал. Дифференциал складывает моменты на ведомом колесе, поступающие от основных ведущих звеньев.

Разновидности планетарных передач

По количеству ступеней планетарные механизмы разделяют на:

  • однорядные;
  • многорядные.

Планетарная передача из одной солнечной шестерни, одновенцовых сателлитов, водила и эпицикла будет однорядной. Замена сателлитов на двухвенцовые усложняет конструкцию, делая её двухрядной.

Многоступенчатая планетарная коробка передач — это последовательно установленные однорядные блоки. Такая схема позволяет суммировать передаточные числа и получать большие значения. 4-скоростные АКПП состоят из двухрядных планетарных конструкций, 8-скоростные — из четырёхрядных.

В АКПП применяют схемы, названные в честь изобретателей:

  • Механизм Уилсона представляет собой трёхрядную конструкцию, в которой соединены корона первого, водило второго и корона третьего рядов. Количество передач — 5 прямых и 1 задняя.
  • Механизм Лепелетье состоит из 3 соосно расположенных простых планетарных передач. Количество передач — 6 прямых и 1 задняя.
  • Схема Симпсона — 2 редуктора с общей солнечной шестернёй. Водило второго ряда оборудовано тормозом. Корона первого ряда и солнце через две блокировочные муфты жёстко соединены с ведущим валом. Механизм реализует режимы: нейтраль; 1,2,3 передачи; задний ход.

По типу зубчатых конструкций планетарные редукторы делятся на:

  • цилиндрические;
  • конические;
  • волновые;
  • червячные.

Разные типы применяют для передачи момента между валами, расположенными параллельно или под углом. А также в механизмах, требующих низкой или высокой кинематической характеристики.

Характеристики основных разновидностей этого устройства

В конструкции планетарного ряда АКПП применяют различные типы зубчатых передач. Выделяют три основные наиболее распространенные: цилиндрические, конические и волновые.

Цилиндрические

Зубчатые механизмы передают момент между параллельными валами. В конструкцию цилиндрической передачи входит две и более пар колёс. Форма зубьев шестерней может быть прямой, косой или шевронной. Цилиндрическая схема простая в производстве и действии. Применяется в коробках передач, бортовых редукторах, приводах. Передаточное число ограничено размерами механизма: для одной колёсной пары достигает 12. КПД — 95%.

Конические

Колёса в конической схеме преобразуют и передают вращение между валами, расположенными под углом от 90 до 170 градусов. Зубья нагружены неравномерно, что снижает их предельный момент и прочность. Присутствие сил на осях усложняет конструкцию опор. Для плавности соединения и большей выносливости применяют круговую форму зубьев.

Производство конических передач требует высокой точности, поэтому обходится дорого. Угловые конструкции применяются в редукторах, затворах, фрезерных станках. Передаточное отношение конических механизмов для техники средней грузоподъёмности не превышает 7. КПД — 98%.

Волновые

Во волновой передаче отсутствуют солнечная и планетные шестерни. Внутри коронного колеса установлено гибкое зубчатое колесо в форме овала. Водило выступает в качестве генератора волн, и выглядит в виде овального кулачка на специальном подшипнике.

Гибкое стальное или пластмассовое колесо под действием водила деформируется. По большой геометрической оси зубья сцепляются с короной на всю рабочую высоту, по малой оси зацепление отсутствует. Движение передаётся волной, создаваемой гибким зубчатым колесом.

Во волновых механизмах КПД растёт вместе с передаточным числом, превышающим 300. Волновая передача не работает в схемах с кинематической характеристикой ниже 20. Редуктор выдает 85% КПД, мультипликатор — 65%. Конструкция применяется в промышленных роботах, манипуляторах, авиационной и космической технике.

Достоинства и недостатки планетарных передач

Планетарная передача выигрывает у простых зубчатых механизмов аналогичной мощности компактным размером и массой меньшей в 2 — 3 раза. Используя нескольких планетных шестерней, достигается зацепление зубьев на 80%. Нагрузочная способность механизма повышается, а давление на каждый зубец уменьшается.

Кинематическая характеристика планетарного механизма доходит до 1000 с малым числом зубчатых колёс без применения многорядных конструкций. Помимо передачи планетарная схема способна работать как дифференциал.

За счёт соосности валов планетарного механизма, компоновать машины проще, чем с другими редукторами.

Применение планетарного ряда в АКПП снижает уровень шума в салоне автомобиля. Сбалансированная система имеет высокую вибропрочность за счет демпфирования колебаний. Соответственно снижается вибрация кузова.

Недостатки планетарного механизма:

  • сложное производство и высокая точность сборки;
  • в сателлиты устанавливают подшипники, которые выходят из строят быстрее, чем шестерня;
  • при повышении передаточных отношений КПД падает, поэтому приходится усложнять конструкцию.

Передаточное число планетарных передач

Передаточным называют отношение частоты ведущего вала планетарной передачи к частоте ведомого. Визуально определить его значение не получится. Механизм приводится в движение разными способами, а значит передаточное число в каждом случае различно.

Для расчёта передаточного числа планетарного редуктора учитывают число зубьев и систему закрепления. Допустим, у солнечной шестерни 24 зуба, у сателлита — 12, у короны — 48. Водило закреплено. Ведущим становится солнце.

Сателлиты начнут вращаться со скоростью, передаваемой солнечной шестернёй. Передаточное отношение равно: -24/12 или -2. Результат означает, что планеты вращаются в противоположном направлении от солнца с угловой скоростью 2 оборота. Сателлиты обкатывают корону и заставляют её обернуться на 12/48 или ¼ оборота. Колёса с внутренним закреплением вращаются в одном направлении, поэтому число положительное.

Общее передаточное число равно отношению числа зубьев ведущего колеса к количеству зубьев ведомого: -24/48 или -1/2 оборота делает корона относительно солнца при зафиксированном водиле.

Если водило станет ведомым при ведущем солнце, то передаточное отношение: (1+48/24) или 3. Это самое большое число, какое способна предложить система. Самое маленькое отношение получается при фиксировании короны и подачи момента на водило: (1+/(1+48/24)) или 1/3.

Передаточные числа простой планетарной схемы: 1,25 — 8, многоступенчатой: 30 — 1000. С ростом кинематической характеристики КПД снижается.

Подбор чисел зубьев планетарных передач

Число зубьев колёс подбирают на первом этапе расчёта планетарной схемы по заранее установленному передаточному отношению. Особенность проектирования планетарного ряда заключается в соблюдении требований правильной сборки, соосности и соседства механизма:

  • зубья сателлитов должны совпадать с впадинами солнца и эпицикла;
  • планеты не должны задевать друг друга зубьями. На практике более 6 сателлитов не используют из-за трудностей равномерного распределения нагрузки;
  • оси водила, солнечного и коронного колёс должны совпадать.

Основное соотношение подбора зубьев передачи через передаточное число выглядит так:

i = 1+Zкорона/Zсолнце,

где  i — передаточное число;

Zn — количество зубьев.

Условие соосности соблюдается при равных межосевых расстояниях солнечного колеса, короны и водила. Для простой планетарной зубчатой передачи проверяют межосевые расстояния между центральными колёсами и сателлитами. Равенство должно удовлетворять формуле:

Zкорона= Zсолнце+2×Zсателлит.

Чтобы между планетами оставался зазор, сумма радиусов соседних шестерней не должна превышать осевое расстояние между ними. Условие соседства с солнечным колесом проверяют по формуле:

sin (π/c)> (Zсателлит+2)/(Zсолнце+Zсателлит),

где с — количество сателлитов.

Планетные колёса размещаются равномерно, если соотношение зубьев короны и солнца к количеству сателлитов окажется целым:

Zсолнце/с = Z;

Zкорона/с = Z,

где Z — целое число.

Расчет на прочность планетарных передач

Прочностной расчёт планетарных передач проводят как для цилиндрических зубчатых передач. Вычисляют каждое зацепление:

  • внешнее — между солнцем и планетными колёсами;
  • внутреннее — между планетами и короной.

Если колёса изготовлены из одного материала, а силы в зацеплении равны, рассчитывают наименее прочное соединение — внешнее.

Алгоритм расчёта следующий:

  1. Выбирают схему редуктора.
  2. Определяют исходные данные: передаточное число i, крутящий момент Твых и частоту вращения выходного вала Uвых.
  3. Подбирают число зубьев с проверкой условий сборки и соседства планетных шестерней.
  4. Рассчитывают угловые скорости колёс.
  5. Вычисляют КПД и моменты выходных валов.
  6. Рассчитывают прочность зацепления.

В расчёте момента учитывают количество планетных колёс и неравномерное нагружение их зубьев. Вводят поправочный коэффициент η =1,5…2, если меры выравнивания отсутствуют:

  • повышенная точность изготовления;
  • радиальная подвижность солнца, короны или водила;
  • применение упругих элементов.

Расчёт зубчатых передач выполняют по двум критериям:

  • контактная прочность, т.е. выносливость рабочих поверхностей зубьев под нагрузкой;
  • напряжение на изгиб, усталостный излом.

Расчёт контактной прочности сводится к проверке условия, что напряжение σн не превышает допустимого значения. Вычисления проводят по формуле Герца для цилиндрических поверхностей, добавляя уточняющие коэффициенты. В результате получают значение межосевого расстояния — главную геометрическую характеристику зубчатой передачи:

d=K×η×∛ (T×Kн(i±1))/(Ψ×i×[σн]^2),

где K — вспомогательный коэффициент для прямозубых колёс, МПа;

η — коэффициент неравномерности;

Т — вращающий момент, Н×мм;

Kн — коэффициент нагрузки;

Ψ — коэффициент ширины колеса равный 0,75;

i — передаточное число;

[σн] — допускаемое контактное напряжение, МПа. Определяется коэффициентом долговечности и пределом выносливости.

После определения геометрии передачи проверяют условие прочности:

σн= {310/(d×i)}×√ (T×Kн(i+1)^3)/(Ψ×d) ≤ [σн]

При расчёте на изгиб принимают условие, что вся нагрузка передаётся одной паре зубьев и приложена к его вершине. Расчётное напряжение не должно превышать допускаемое:

σf= (M/W) – (F/(b×s) ≤ [σf],

где М — изгибающий момент;

W — осевой момент сопротивления;

F — сила сжатия;

b, s — размеры зуба в сечении;

[σf] — допускаемое напряжение изгиба. Зависит от предела выносливости, шероховатости, погрешности изготовления зубьев.

Советы по подбору планетарного редуктора

Перед выбором планетарного редуктора проводят точный расчёт нагружения и режимов работы механизма. Определяют тип передачи, осевые нагрузки, температурный диапазон и типоразмеры редуктора. Для тяжёлой спецтехники, где нужен большой крутящий момент при малых скоростях, выбирают редуктор с высоким передаточным отношением.

Чтобы сбавить угловую скорость, не снижая крутящего момента, применяют привод с электродвигателем и редуктором. При выборе мотор редуктора учитывают:

  • эксплуатационную нагрузку;
  • момент вала на выходе;
  • частоту вращения входного и выходного валов;
  • мощность электродвигателя;
  • монтажное исполнение.

Область применения планетарных передач

Планетарная схема используется в:

  • редукторах;
  • автоматических и механических коробках передач;
  • в приводах летательных аппаратов;
  • дифференциалах машин, приборов;
  • ведущих мостах тяжёлой техники;
  • кинематических схемах металлорежущих станков.

Планетарную коробку передач применяют в агрегатах с переменным передаточным отношением, затормаживая водило. В гусеничной технике для сложения потоков мощности элементы в планетарном механизме не блокируют.

Заключение

Планетарные передачи в АКПП зарекомендовали себя десятилетиями эксплуатации со времён Ford T: компактными размерами, малым весом, высокими скоростями, надёжностью и выносливостью. Планетарная схема способна передавать вращение и управлять потоками мощности, поэтому нашла применение в авиации, машиностроении, промышленности.

Чтобы не ошибиться с выбором конструкции, проводят точный расчёт геометрии и прочности зубчатой передачи, сверяя с допустимыми значениями. Ошибки вычислений приводят к чрезмерной нагрузке зубчатых передач, поломке и истиранию зубьев.

akppoff.ru

Планетарная коробка передач подробно — Энциклопедия журнала «За рулем»

Планетарная механическая коробка передач (МКП) — разновидность коробки передач, в которой используются планетарные механизмы. Была распространена в начале ХХ столетия (автомобиль Ford T), в наше время получила достаточно широкое распространение в гусеничной технике — военной и гражданской, а также на велосипедах и в автомобилях с гибридной трансмиссией.

Устройство и принцип работы

В планетарной МКП используется система шестерен-сателлитов, вращающихся вокруг центральной солнечной шестерни. Чаще всего сателлиты размещены внутри большой коронной шестерни (эпицикла), с которой находятся в постоянном зацеплении. В свою очередь сателлиты закреплены на водиле.
Изменение передаточного отношения планетарной МКП зависит от того, какой из трех основных элементов — солнечная шестерня, сателлиты с водилом и коронная шестерня — закреплен неподвижно, на какой подается крутящий момент и с какого элемента снимается трансмиссией. В любом случае один из трех основных элементов планетарной коробки (а сателлиты рассматриваются как одно целое с водилом) будет неподвижен, два других будут вращаться. Для остановки и блокировки одного из элементов КП используется система ленточных тормозов и блокировочных муфт. Но есть планетарные механизмы, в которых тормоза и муфты отсутствуют — речь идет о дифференциалах, которые тоже относятся к планетарным механизмам, построенным с применением конических шестерен.
Вариантов планетарных систем, применяемых в МКП, достаточно много. Описание принципа работы касается простейшей системы с тремя сателлитами, закрепленными на водиле под углом в 120 градусов.
Понижающая передача. Первый вариант. Если остановить эпицикл, крутящий момент от двигателя подавать на вал солнечной шестерни, а снимать крутящий момент с водила, то в результате частота вращения вала водила будет меньше, чем частота вращения солнечной шестерни.
Второй вариант. Если подать вращающий момент вала двигателя на эпицикл, заблокировать солнечную шестерню, а крутящий момент снимать с водила, получится тот же эффект (но с передаточным числом близким к единице).
Повышающая передача. Первый вариант. Эпицикл заблокирован, крутящий момент подается на водило с сателлитами, а снимается с центральной солнечной шестерни. В результате КП работает в качестве повышающего редуктора.
Второй вариант. Солнечная шестерня блокирована, крутящий момент подается на водило, снимается с большой коронной шестерни. Эффект получается такой же, КП работает в режиме повышающей передачи.
Задний ход. Первый вариант. Крутящий момент подается на солнечную шестерню, снимается с эпицикла, водило закреплено неподвижно. С этом случае КП работает в качестве редуктора с отрицательным передаточным отношением, то есть включен режим реверса крутящего момента.
Второй вариант. Крутящий момент подается на эпицикл, снимается с вала солнечной шестерни, водило, опять же, закреплено неподвижно. КП работает в реверсивном режиме с отрицательным передаточным отношением.

Применение планетарных МКП

В автомобильном транспорте МКП с ручным (а точнее, с ножным) управлением вышли из употребления еще в 1928 году — с прекращением выпуска легендарного автомобиля марки Ford T. В этой машине применялась планетарная механическая двухступенчатая коробка передач. При этом переключение передач производилось педалями, которые включали ленточные тормоза коробки. Первая передача включалась нажатием на правую педаль, вторая — на среднюю и задний ход — на левую педаль (всего было три педали, вместо педали «газа» использовался подрулевой рычаг).
В 30-е и последующие годы МКП была вытеснена полуавтоматическими и автоматическими планетарными КП. В полуавтоматах вместо сцепления использовались гидромуфты, в автоматах — гидротрансформаторы.

Планетарный редуктор

Сегодня планетарные МКП широко используются в гусеничной технике, в том числе и военной — в танках, тягачах, транспортерах. В авиационных турбинах, в металлорежущих станках — в качестве редукторов.

Очень популярны планетарные механический коробки передач, встроенные в заднюю втулку велосипедного колеса. Эти коробки легки, долговечны, эффективны и просты в эксплуатации, поскольку не требуют какого-либо обслуживания. В то же время они повышают стоимость велосипедов и не применяются в спортивных моделях — из-за большой массы (порядка 1,5-2 кг) и меньшей ремонтопригодности по сравнению с открытыми устройствами перевода цепи параллелограммного типа.

Достоинства и недостатки планетарных КП

К достоинствам планетарных коробок следует отнести компактность. Все детали планетарной КП вращаются вокруг одной оси. В них нет валов, ползунов и последовательно расположенных шестерен. В результате такая коробка занимает примерно столько же места, сколько одно-двухдисковое сцепление.
В то же время планетарные коробки способны передавать очень большой крутящий момент, что обуславливает их применение в тяжелой (в частности, танковой) технике. Эта особенность объясняется тем, что крутящий момент равномерно распределяется на сателлиты (которых может быть больше трех), зубья которых испытывают меньшие по сравнению с двух-трехвальными КП механические нагрузки. Планетарные коробки отличаются повышенным ресурсом и простотой обслуживания.
Конструкция планетарных коробок позволяет легко организовать систему управления — оснастить элементы КП ленточными тормозами и блокировочными муфтами (поясним: первые нужны для плавной остановки вращения шестерен, вторые — для окончательной блокировки и, соответственно, переключения передачи).
Наконец, правильно спроектированная планетарная КП с верно подобранным передаточным отношением шестерен имеет более высокий коэффициент полезного действия, чем двух-трехвальные механические КП.
Но вместе с тем есть у планетарных коробок и недостатки. Главный из них — сложность с проектирования и производства многоступенчатых КП. В автоматических коробках для получения трех и более ступеней переключения приходится прибегать к каскадным планетарным системами. Это усложняет КП и, соответственно, снижает ее КПД и надежность.
В наши дни наработки в области планетарных автомобильных коробок передач используются в производстве автоматических планетарных коробок, которые полностью вытеснили механические КП этого типа. Вместе с полуавтоматическими и бесступенчатыми трансмиссиями (прежде всего, с вариаторными системами) АКП широко используются в легковых автомобилях среднего и высокого класса. Благодаря эксплуатационным удобствам АКП пользуются повышенной популярностью и постепенно вытесняют механические КП с ручным управлением из автомобилей бюджетного класса.

wiki.zr.ru

Механизм планетарный: расчет, схема, синтез

Существуют всевозможные механические устройства. Одни из них знакомы нам с детства. Это, например, часы, велосипед, юла. О других мы узнаем, когда становимся старше. Это моторы машин, лебедки подъемных кранов и прочие. В каждом двигающемся механизме используется какая-либо система, заставляющая колесики крутиться, а машину работать. Одним из самых интересных и востребованных является планетарный механизм. Его суть состоит в том, что машину приводят в движение колесики или шестеренки, взаимодействующие между собой особым способом. Рассмотрим его подробнее.

Общие сведения

Планетарная передача и планетарный механизм так названы по аналогии с нашей Солнечной системой, которую условно можно представить так: в центре есть «солнце» (центральное колесо в механизме). Вокруг него движутся «планеты» (маленькие колесики или сателлиты). Все эти детали в планетарном механизме имеют наружные зубья. Условная солнечная система по ее диаметру имеет границу. Роль ее в планетарном механизме выполняет большое колесо или эпицикл. На нем тоже есть зубья, только внутренние. Большую работу в данной конструкции выполняет водило, представляющее собой рычажный механизм. Движение может осуществляться по-разному: либо солнце будет вращаться, либо эпицикл, но всегда совместно с сателлитами.

При работе планетарного механизма может использоваться и другая конструкция, например, два солнца, сателлиты и водило, но без эпицикла. Еще вариант — два эпицикла, но без солнца. Водило и сателлиты должны присутствовать всегда. В зависимости от количества колес и расположения осей их вращения в пространстве, конструкция может быть простой или сложной, плоской или пространственной.

Чтобы полностью понять, как работает такая система, необходимо разобраться в деталях.

Расположение элементов

Самая простая форма планетарного механизма включает в себя три комплекта передач с разной степенью свободы. Указанные выше сателлиты вращаются вокруг своих осей и одновременно вокруг солнца, остающегося на месте. Эпицикл связывает планетарный механизм снаружи и тоже вращается посредством поочередного сцепления зубьев (его и сателлитов). Такая конструкция способна в одной плоскости изменять крутящий момент (угловые скорости).

В простом планетарном механизме может вращаться солнце и сателлиты, а эпицентр оставаться фиксированным. В любом случае, угловые скорости всех составляющих не хаотичны, а имеют линейную зависимость друг от друга. По мере поворота носителя, обеспечивается низкоскоростной выход с высоким крутящим моментом.

То есть суть планетарной передачи заключается в том, что такая конструкция способна изменять, раскладывать и складывать крутящий момент и проводимую угловую скорость. Вращательные движения при этом происходят в одной геометрической оси. Устанавливается необходимый элемент трансмиссии различных транспортных средств и механизмов.

Особенности структурных материалов и схем

Однако фиксированный компонент не всегда необходим. В дифференциальных системах каждый элемент вращается. Механизмы планетарные, подобные этому, включают в себя один выход, управляемый (управляющий) двумя входами. Например, дифференциал, который управляет осью в автомобиле, представляет собой подобную передачу.

Такие системы работают по тому же принципу, что и структуры с параллельным валом. Даже простая планетарная передача имеет два входа, закрепленная кольцевая шестерня представляет собой постоянный вход нулевой угловой скорости.

Детальное описание устройств

Смешанные планетарные конструкции могут иметь разное количество колес, а также различные передачи, посредством которых они соединяются. Наличие таких деталей значительно расширяет возможности механизма. Составные планетарные конструкции могут быть собраны так, чтобы вал несущей платформы двигался с высокой скоростью. В результате некоторые проблемы с редукцией, солнечной шестерней и прочими могут быть устранены в процессе усовершенствования устройства.

Таким образом, как видно из приведенной информации, планетарный механизм работает по принципу передачи вращения между звеньями, являющимися центральными и подвижными. При этом сложные системы более востребованы, чем простые.

Варианты конфигурации

В планетарном механизме можно использовать колеса (шестерни) различной конфигурации. Подходят стандартные с прямыми зубьями, косозубые, червячные, шевронные. Тип зацепления на общий принцип работы планетарного механизма не будет влиять. Главное, чтобы совпадали оси вращения водила и центральных колес. А вот оси сателлитов могут располагаться в других плоскостях (скрещивающихся, параллельных, пересекающихся). Пример скрещивающихся — дифференциал межколесный, у которого зубчатые колеса имеют коническую форму. Пример скрещивающихся — дифференциал самоблокирующийся, у которого зацепление червячное (Torsen).

Простые и сложные устройства

Как уже отмечалось выше, схема планетарного механизма всегда включает водило и два центральных колеса. Сателлитов может быть сколько угодно. Это, так называемое, простое или элементарное устройство. В таких механизмах конструкции могут быть такими : «СВС», «СВЭ», «ЭВЭ», где:

  • С — солнце.
  • В — водило.
  • Э — эпицентр.

Каждый такой набор колес + сателлиты называется планетарным рядом. При этом все колеса должны вращаться в одной плоскости. Простые механизмы бывают одно- и двухрядными. В различных технических приборах и машинах они используются редко. Примером может послужить планетарный механизм велосипеда. По такому принципу работает втулка, благодаря которой осуществляется движение. Ее конструкция создана по схеме «СВЭ». Сателлитов в не 4 штуки. При этом солнце жестко крепится к оси заднего колеса, а эпицентр является подвижным. Вращаться его вынуждает велосипедист, нажимающий на педали. При этом скорость передачи, следовательно, и скорость вращения могут меняться.

Гораздо чаще можно встретить сложные зубчатые планетарные механизмы. Их схемы могут быть самыми разными, что зависит от того, для чего предназначается та или иная конструкция. Как правило, сложные механизмы состоят из нескольких простых, созданных по общему правилу для планетарной передачи. Такие сложные системы бывают двух-, трех- или четырехрядные. Теоретически можно создавать конструкции и с большим числом рядов, но на практике такое не встречается.

Плоские и пространственные устройства

Некоторые думают, что простой планетарный механизм обязательно должен быть плоским. Это верно лишь отчасти. Сложные устройства тоже могут быть плоскими. Это значит, что планетарные ряды, сколько бы их ни использовалось в устройстве, находятся в одной либо в параллельных плоскостях. Пространственные механизмы имеют планетарные ряды в двух и более плоскостях. При этом самих колес может быть меньше, чем в первом варианте. Заметим, что плоский планетарный механизм такой же, как и пространственный. Разница состоит только в занимаемой устройством площади, то есть в компактности.

Степени свободы

Так называется совокупность координат вращения, позволяющая определить положение системы в пространстве в данный момент времени. Фактически каждый планетарный механизм имеет степеней свободы не менее двух. То есть угловые скорости вращения любого звена в таких устройствах не связаны линейно, как в других зубчатых передачах. Это позволяет получать на выходе угловые скорости не такие, какие есть на входе. Объяснить это можно тем, что в дифференциальной связи в планетарном механизме находятся три элемента в любом ряду, а остальные будут связаны с ним линейно, посредством какого-либо одного элемента ряда. Теоретически можно создать планетарные системы с тремя и более степенями свободы. Но на практике они оказываются неработоспособными.

Передаточное отношение планетарного механизма

Это важнейшая характеристика вращательного движения. Она позволяет определить, во сколько раз увеличился момент силы на валу ведомом по отношению к моменту вала ведущего. Определить передаточное отношение можно по формулам:

i = d2/d1 =Z2/Z1 = M2/M1 = W1/W2 = n1/n2, где:

  • 1 — звено ведущее.
  • 2 — звено ведомое.
  • d1, d2 — диаметры первого и второго звеньев.
  • Z1, Z2 — число зубьев.
  • M1, M2 — крутящие моменты.
  • W1 W2 — угловые скорости.
  • n1 n2 — частота вращения.

Таким образом, при передаточном отношении выше единицы на ведомом валу увеличивается момент силы, а частота и угловая скорость уменьшаются. Это всегда нужно учитывать при создании конструкции, потому что передаточное отношение в планетарных механизмах зависит от того, сколько зубьев имеют колеса, и какой именно элемент ряда является ведущим.

Область применения

В современном мире существует множество различных машин. Многие из них работают с помощью планетарных механизмов.

Они используются в автомобильных дифференциалах, планетарных редукторах, в кинематических схемах сложных станков, в редукторах воздушных двигателей самолетов, в велосипедах, в комбайнах и тракторах, в танках и другой военной технике. По принципам планетарной передачи работают многие коробки передач, в приводах электрогенераторов. Рассмотрим еще одну такую систему.

Планетарный механизм поворота

Данная конструкция находит применение в некоторых тракторах, машинах на гусеничном ходу и танках. Простая схема устройства показана на рисунке ниже.

Принцип работы планетарного механизма поворота такой: водило (позиция 1) связано с барабаном тормоза (2) и ведущим колесом, расположенным в гусенице. Эпицикл (6) связан с валом передачи (позиция 5). Солнце (8) связано с диском фрикциона (3) и барабаном тормоза поворота (4). При включении блокировочного фрикциона и выключении ленточных тормозов сателлиты вращаться не будут. Они станут подобны рычагам, так как посредством зубьев связаны с солнцем (8) и эпициклом (6). Поэтому вынуждают их и водило одновременно вращаться вокруг общей оси. При этом угловая скорость одинаковая.

При выключении блокировочного фрикциона и включении тормоза поворота солнце начнет останавливаться, а сателлиты начнут двигаться вокруг своих осей. Тем самым они создают момент на водиле и вращают ведущее колесо гусеницы.

Износ

Что касается срока службы и амортизации, то в линейных механизмах планетарных систем распределение нагрузки заметно среди основных компонентов.

Термическая и циклическая усталость могут повышаться в них за счет ограниченного распределения нагрузки и того факта, что планетарные передачи могут вращаться довольно быстро по их осям. Более того, при высоких скоростях и передаточных отношениях планетарного механизма, центробежные силы могут значительно увеличить величину движения. Также следует заметить, что по мере снижения точности производства и увеличения количества сателлитов тенденция к дисбалансу возрастает.

Эти устройства и их системы могут даже подвергнуться износу или амортизации. Некоторые конструкции будут чувствительны даже к небольшим дисбалансам и способны потребовать качественные и дорогие компоненты сборки. Точным расположением планетных штифтов вокруг оси солнечной шестерни может быть ключ.

Другие схемы планетарных механизмов, которые помогают балансировать нагрузки, включают использование плавающих подузлов или «мягких» креплений, чтобы обеспечить максимально долговечное движение солнца или эпицентра.

Основы синтеза планетарных устройств

Эти знания нужны при проектировании и создании узлов машин. Понятие «синтез планетарных механизмов» заключается в расчете числа зубьев в солнце, эпицентре и сателлитах. При этом необходимо соблюсти ряд условий:

  • Передаточное отношение должно равняться заданному значению.
  • Зацепление зубьев колес должно быть правильным.
  • Необходимо обеспечить соосность входного вала и выходного.
  • Требуется обеспечить соседство (сателлиты не должны мешать друг другу).

Также при проектировании нужно учитывать габариты будущей конструкции, ее массу и КПД.

Если задано передаточное число (n), то число зубьев на солнце (S) и на планетарных шестернях (P) должно удовлетворять равенству:

n = S/P

Если допустить, что число зубьев на эпицентре рано (А), то при заблокированном водиле должно быть соблюдено равенство:

n = -S/A

Если закреплен эпицентр, то будет верным следующее равенство:

n = 1+ A/S

Так производится расчет планетарного механизма.

Преимущества и недостатки

Существует несколько видов передачи, которые благополучно используются в различных устройствах. Планетарная среди них выделяется следующими достоинствами:

  • Обеспечивается меньшая нагрузка на каждый зубец колес (и солнца, и эпицентра, и сателлитов) за счет того что нагрузка на них распределяется более равномерно. Это положительно влияет на срок службы конструкции.
  • При той же мощности планетарный механизм имеет меньшие габариты и массу, чем при использовании других видов передачи.
  • Возможность достигать большего передаточного числа с меньшим количеством колес.
  • Обеспечение меньшего уровня шума.

Недостатки планетарных механизмов:

  • Нужна повышенная точность при их изготовлении.
  • Малый КПД при сравнительно большом передаточном отношении.

fb.ru

Строим планетарную КПП, часть 1: планетарные ряды

В предыдущих статьях о трансмиссиях я касался только двухвальных, трёхвальных и безвальных коробок передач, а планетарные обходил стороной. На сей раз я решил подробно описать работу планетарных коробкок передач фирмы Pulsgetriebe для Тигра и прототипа Леопарда. Однако я не мог уместить в один пост и объяснение принципов работы планетарных редуторов, и рассмотрение простой планетарной коробки передач, и, наконец, описание реальных КПП Pulsgetriebe. Поэтому я написал три поста: в первых двух объясняется, как работают планетарные редукторы и коробки передач, а в третьем дано описание коробок передач PP33 и PP45.

Если вы понимаете, как работают планетарные КПП, сразу переходите к третьему посту. Если нет, то прочтите этот пост и его вторую часть. В них я исхожу из того, что читатель знает, как работают двухвальные или трёхвальные коробки передач, но ничего не понимает в планетарных передачах.

ПРДПВ:


Устройство планетарной передачи
Для того, чтобы изучить, как работает простая коробка передач, нужно сперва понять, как работает простейший редуктор из пары шестерён, а затем из таких пар собрать коробку передач. Мы поступим аналогично: сперва разберёмся с планетарными редукторами, а затем посмотрим, как их можно применить. Скажу сразу: люди придумали очень много планетарных механизмов и очень много схем планетарных коробок передач, всё их многообразие мы, конечно, охватить не сможем.

Один из самых распространённых планетарных механизмов выглядит следующим образом:

Он состоит из трёх частей:


  • Солнечная шестерня, выделена жёлтым

  • Эпициклическая шестерня (или просто эпицикл) с внутренними зубьями, выделена красным

  • Шестерни-Сателлиты, связывающие солнечную шестерню с эпициклом, выделены синим

  • Зелёным цветом закрашено водило, которое связывает все сателлиты

Если эпицикл зафиксировать неподвижно и начать вращать солнечную шестерню, то сателлиты начнут её «обегать» подобно тому, как планеты вращаются вокруг солнца, поэтому подобны передачи и получили название планетарных.

У данной передачи есть три части: солнечная шестерня, эпицикл и водило. Если мы заблокируем одну из частей и начнём вращать другую, то начнёт вращаться третья. Её скорость вращения будет зависеть от чисел зубьев шестерён. Например, заблокируем серый эпицикл и начнём вращать красное водило, при этом будет вращаться и зелёный ведомый вал от солнечной шестерни:


Рассмотрим все три случая. Для того, чтобы анимация не мешала читать, я не буду вставлять сами картинки, но дам ссылки на них:

В третьем случае мы меняем направление вращения, что нам позже пригодится для реализации заднего хода.

Планетарные редукторы
Для того, чтобы использовать планетарную передачу как редуктор, нужно связать один элемент с ведущим валом, второй с ведомым, а третий заблокировать.

Вот схема редуктора с заблокированным эпициклом:

С заблокированной солнечной шестернёй:

С заблокированным водилом:

Планетарные редукторы имеют целый ряд достоинств перед обычными. Во-первых, мощность передаётся через несколько шестерён, как следствие, при прочих равных меньше нагрузка на зубья, выше надёжность и срок службы. Во-вторых, ведущий и ведомый валы соосны, часто это очень удобно с точки зрения компоновки. В-третьих, планетарная передача более компактна, чем простой редуктор с тем же передаточным числом:

Планетарный однопоточный механизм поворота
Планетарную передачу можно использовать не только как редуктор, но и в механизме поворота. На среднем танке Шерман, например, механизм поворота двойной дифференциал, а это тоже планетарный механизм. Но мы рассмотрим механизм поворота не дифференциального, а независимого типа.

На схемах выше мы жёстко блокировали один из элементов планетарного механизма, поэтому он всегда работал как редуктор, передавая мощность. Давайте уберём эту блокировку и добавим ленточный тормоз:

Представим, что двигатель связан с эпициклом, а водило с ведущими колёсами танка. Когда тормоз Т выключен происходит следующее. Двигатель вращает эпицикл, сателлиты и солнечную шестерню. Водило связано с ведущими колёсами, для того, чтобы оно вращалось нужно сдвинуть танк с места. Разумеется, намного проще вращать солнечную шестерню вхолостую, поэтому именно водило будет неподвижным. Для того, чтобы танк начал движение, нужно затянуть тормоз Т. Солнечная шестерня будет заблокирована и мощность пойдёт через водило к ведущим колёсам.

Осталось добавить остановочные тормоза и мы получим механизм поворота:

Тормоза Т2 и Т4 — остановочные, они тормозят ведущие колёса танка. Тормоза Т1 и Т3 называются опорными, они нужны для того, чтобы блокировать солнечные шестерни.

Для того, чтобы начать движение по прямой нам нужно выключить остановочные тормоза и затянуть опорные. Для поворота влево выключаем опорный тормоз Т1, а потом затягиваем остановочный тормоз Т2. Он тормозит левую гусеницу, мощность двигателя к ней не идёт. Для поворота вправо, соответственно, нужно выключить тормоз Т3 и занянуть Т4.

Планетарный механизм с внешним зацеплением
Выше мы рассмотрели планетарные механизмы с внутренним зацеплением, поскольку у их эпициклов внутренние зубья. Существуют аналогичные механизмы внешнего зацепления. В них используются эпициклы с внешними зубьями.

Всё познаётся в сравнении. Слева уже знакомый нам планетарный редуктор с заблокированным водилом и эпициклом внутреннего зацепления, а справа его аналог, тоже с заблокированным водилом, но с внешним зацеплением:

Давайте разберёмся, из каких частей он состоит и как работает.

Чёрным цветом выделена солнечная шестерня, синим — эпицикл, красным — сдвоенный сателлит, а серым помечено водило.

Если заблокировать водило и начать вращать солнечную шестерню, то она станет вращать сателлит и через него эпицикл. Если заблокировать эпицикл и вращать солнечную шестерню, то будет вращаться водило. Одним словом, принцип работы точно такой же, просто другое исполнение.

На этом пока остановимся. В следующем посте на основе этих механизмов мы сделаем простейшие двухскоростные коробки передач и реверс, а затем соберём из них планетарную коробку передач и проанализируем её работу.

Читать дальше

kedoki.livejournal.com

Планетарный механизм — это… Что такое Планетарный механизм?

Планетарная передача в режиме повышения скорости. Водило (зелёное) вращается внешним источником. Усилие снимается с солнечной шестерни (жёлтая), в то время как кольцевая шестерня (красная) закреплена неподвижно. Красные метки показывают вращение входного вала на 45°.

Планетарная передача — механическая система, состоящая из нескольких планетарных зубчатых колёс (шестерён), вращающихся вокруг центральной, солнечной, шестерни. Обычно, планетарные шестерни фиксируются вместе с помощью водила. Планетарная передача может также включать дополнительную внешнюю кольцевую шестерню, имеющую внутреннее зацепление с планетарными шестернями.

Передаточное отношение

Водило (зелёное) закреплено неподвижно, в то время как солнечная шестерня (жёлтая) вращается внешним источником. В данном случае передаточное отношение равно -24/16, или -3/2; каждая планетарная шестерня поворачивается на 3/2 оборота относительно солнечной шестерни, в противоположном направлении.

Передаточное отношение такой передачи визуально определить достаточно сложно, в основном, потому что система может приводиться во вращение несколькими разными способами. Основными элементами планетарной передачи можно считать следующие:

  • Солнечная шестерня: находится в центре;
  • Водило: жёстко фиксирует друг относительно друга оси нескольких планетарных шестерён (сателлитов) одинакового размера, находящихся в зацеплении с солнечной шестерней;
  • Кольцевая шестерня (эпицикл): внешнее зубчатое колесо, имеющее внутреннее зацепление с планетарными шестернями.

При использовании планетарной передачи в качестве редуктора один из трёх её основных элементов фиксируется неподвижно, другой элемент используется как ведущий, а третий – в качестве ведомого. Таким образом, передаточное отношение будет зависеть от количества зубьев каждого компонента, а также того, какой элемент закреплён.

Часто планетарные передачи используются для суммирования двух потоков мощности (например, планетарные ряды двухпоточных трансмиссий некоторых танков и др. гусеничных машин), в этом случае неподвижно зафиксированных элементов нет. Например, два потока мощности могут подводиться к солнечной шестерне и эпициклу, а результирующий поток снимается с водила.

Рассмотрим случай, когда водило зафиксировано, а мощность подводится через солнечную шестерню. В этом случае планетарные шестерни вращаются на месте со скоростью, определяемой отношением числа их зубьев относительно солнечной шестерни. Например, если мы обозначим число зубьев солнечной шестерни как S, а для планетарных шестерён примем это число как P, то передаточное отношение будет определяться формулой —S/P, то есть если у солнечной шестерни 24 зуба, а у планетарных по 16, то передаточное отношение будет -24/16, или -3/2, что означает поворот планетарных шестерён на 1,5 оборота в противоположном направлении относительно солнечной.

Далее вращение планетарных шестерён может передаваться кольцевой шестерне, с соответствующим передаточным числом. Если кольцевая шестерня имеет A зубьев, то оно будет вращаться с соотношением P/A относительно планетарных шестерён. (В данном случае перед дробью нет минуса, так как при внутреннем зацеплении шестерни вращаются в одну сторону). Например, если на кольцевой шестерне 64 зуба, то относительно приведённого выше примера это отношение будет равно 16/64, или 1/4. Таким образом, объединив оба примера, мы получим следующее:

  • Один оборот солнечной шестерни даёт —S/P оборотов планетарных шестерён;
  • Один оборот планетарной шестерни даёт P/A оборотов кольцевой.

В итоге, если водило заблокировано, общее передаточное отношение системы будет равно —S/A.

В случае, если закреплена кольцевая шестерня, а мощность подводится к водилу, передаточное отношение на солнечную шестерню будет больше единицы и составит 1+A/S.

Всё вышесказанное можно описать следующим выражением:

,

где n – это параметр передачи, равный , то есть отношению числа зубьев солнечной и планетарных шестерён.

Если закрепить кольцевую шестерню, а мощность подводить к солнечной шестерне, то мощность должна сниматься с водила. В этом случае передаточное отношение будет равно 1/(1+A/S). Это самое маленькое передаточное число, которое может быть получено в планетарной передаче. Такие передачи используются, например, в тракторах и строительной технике, где требуется большой крутящий момент на колёсах при невысокой скорости.

Применение

Наиболее широкое применение принцип нашёл в автомобильных дифференциалах, кроме того используется в суммирующих звеньях кинематических схем металлорежущих станков.

В современных устройствах могут использоваться каскады из нескольких планетарных передач для получения большого диапазона передаточных чисел. На этом принципе работают многие автоматические коробки передач.

Во время Второй мировой войны была разработана особая конструкция планетарной передачи, которая использовалась для привода небольших радаров. Кольцевая шестерня изготавливалась из двух частей, каждая толщиной в половину толщины других компонентов. Одна из этих половинок фиксировалась неподвижно и имела на 1 зуб меньше, чем вторая. В такой конструкции при полном обороте планетарных шестерён и нескольких оборотах солнечной шестерни, подвижное кольцо поворачивалось всего на 1 зуб. Таким образом, получалось очень высокое передаточное отношение при небольших габаритах.

Cм. также

Wikimedia Foundation. 2010.

dic.academic.ru

Механизм планетарной передачи и чертеж

Кроме обычных зубчатых передач, рассмотренных выше, на тракторах часто применяется планетарная передача, которая получила такое название потому, что ее детали перемещаются относительно друг друга аналогично движению планет вокруг солнца.

Устройство

Простейшая планетарная передача состоит из следующих главных частей:

  1. Центральную — солнечную шестерню
  2. Наружную — коронную шестерню
  3. Сателлиты — спутники, вращающиеся вокруг центральной солнечной шестерни
  4. Водило.

Коронная шестерня содержит внутренний зубчатый венец – корону и соединяется с валом, опирающимся на подшипники. Солнечная шестерня с наружными зубьями закреплена на целом или полом валу, также опирающемся на подшипники. На чертеже представлена такая передача.

1 – ведущий вал; 2 – коронная шестерня; 3 – сателлит; 4 – водило; 5 – солнечная шестерня; 6 – тормоз солнечной шестерни; 7 – ведомый вал; 8 – муфта сцепления.

Сателлиты входят одновременно в зацепление с коронной и солнечной шестернями и свободно вращаются в подшипниках на осях, закрепленных во фланце, который называется водилом. Водило планетарной передачи соединяется с ведомым валом. Такая планетарная передача работает разными способами.

Рабочий процесс

Если вращать коронную шестерню, соединенную с ведущим валом, при свободно вращающейся на подшипниках солнечной шестерне, то водило, соединенное с ведомым валом, не будет вращаться. В этом случае сателлиты будут передавать вращение солнечной шестерне в обратном направлении с передаточным числом, которое зависит от соотношения диаметров сцепленных шестерен.

В случае если солнечную шестерню затормозить, то при вращении коронной шестерни, сателлиты, обкатываясь по неподвижной солнечной шестерне, будут вести за собой водило, вращая ведомый вал с необходимым передаточным числом.

Если же жестко соединить между собой солнечную шестерню и водило, например, при помощи муфты сцепления, планетарный механизм будет замкнут — заблокирован и начнет вращаться, как одно целое. При этом число оборотов ведущего и ведомого валов будет одинаковым, передаточное число равно 1,0.

Включать и выключать такую передачу можно без прекращения вращения коронной шестерни и ведущего вала.

Возможны и другие случаи использования планетарной передачи, когда ведущая часть — солнечная шестерня, а ведомая — коронная.

Рассмотренная простейшая планетарная передача, у которой сателлиты одновременно входят в зацепление с солнечной и коронной шестернями, носит название передачи с внешним и внутренним зацеплением.

Механизм передачи с внешним зацеплением

Такая передача снабжается двойными сателлитами, которые входят в зацепление только с двумя солнечными шестернями, одна соединяется с ведущим валом, а вторая — с ведомым.

Главные достоинства:

  • универсальность использования
  • малые размеры и вес при получении больших передаточных чисел
  • возможность изменения передаточных чисел без остановки ведущего и ведомого валов, на ходу трактора
  • большой срок службы, так как все шестерни в постоянном зацеплении друг с другом и работают в масле.

Для остановки планетарной передачи используют ленточные тормоза, а для соединения частей друг с другом, блокирования — дисковые муфты сцепления.

Планетарные механизмы из-за преимуществ начинают шире применять на тракторах для изменения передаточных чисел силовой передачи на ходу при помощи увеличителя крутящего момента, для поворота гусеничного трактора и в механизме независимого привода вала отбора мощности.



tractor-server.ru

Вам может понравится

Отправить ответ

avatar
  Подписаться  
Уведомление о