Описание и принцип работы турбонаддува двигателя

Правила эксплуатации

Чтобы в полной мере использовать ресурс турбины дизельного мотора и продлить ее срок службы, необходимо выполнять ряд условий:

  • Регулярно менять масло в системе, чтобы не допустить попадания абразива в маслопровод и его засорения.
  • Применять только качественное масло, имеющее сертификат, той марки, которая соответствует указанной в паспортных данных двигателя.
  • Прогревать мотор перед началом движения и не давать холодному двигателю высоких нагрузок.
  • Никогда резко не отключать движок, а после остановки автомобиля давать ему возможность поработать несколько секунд на холостых оборотах.

Принцип работы турбины. Как работает турбонаддув в автомобиле

Для более ясного представления о том, как работает турбина в автомобиле, прежде всего необходимо ознакомится с принципом работы двигателя внутреннего сгорания. Сегодня, основная масса грузовых и легковых автомобилей оснащаются 4-х тактными силовыми агрегатами, работа которых контролируется впускными и выпускными клапанами.

Каждый из рабочих циклов такого двигателя состоит из 4 тактов, при которых коленвал делает 2 полных оборота

Впуск — при этом такте осуществляется движение поршня вниз, при этом в камеру сгорания поступает смесь топлива и воздуха (если это бензиновый двигатель) или только воздуха в случае если это дизельный агрегат.

Компрессия — при этом такте происходит сжатие горючей смеси.

Расширение — на этом этапе происходит воспламенение горючей смеси при помощи искры, вырабатываемой свечами. В случае с дизельным двигателем, воспламенение осуществляется произвольно под действием высокого давления впрыска.

Выпуск — поршень двигается вверх, при этом освобождаются выхлопные газы.

Такой принцип работы двигателя определяет следующие способы повышения его эффективности:

— Установка турбонаддува- Увеличение рабочего объёма двигателя- Увеличение числа оборотов коленчатого вала двигателя

Особенности эксплуатации турбированных двигателей

На режимах разгона автомобиля в силу инерционности системы возникает явление, получившее название “турбояма”. Сущность явления заключается в следующем:

  • Автомобиль движется с небольшой постоянной скоростью.
  • Турбина вращается в соответствующем режиме.
  • При резком нажатии на педаль ускорения в цилиндры двигателя подается больше топлива.
  • После его сгорания образуются отработавшие газы, которые с большей силой воздействуют на турбину и . Однако происходит это с некоторой временной задержкой.

Таким образом, между моментом нажатия на педаль и фактическим ускорением автомобиля присутствует некоторая временная задержка – “турбояма”. Также данное явление проявляется в виде недостатка крутящего момента на малых оборотах двигателя.

Виды систем турбонаддува

Производители разработали различные способы избавления от “турбоямы”:

  • Турбина с изменяемой геометрией. Конструкция предусматривает изменение сечения входного канала. За счет этого выполняется регулирование потока отработавших газов.
  • Два турбокомпрессора, установленных последовательно (). На каждый режим работы (обороты двигателя) предусматривается свой компрессор.
  • Два турбокомпрессора, установленных параллельно (Bi Turbo). Схема разбиения на две турбины снижает инерцию системы, и турбояма становится не так ощутима.
  • Комбинированный наддув. Устройство предусматривает и механический, и турбонаддув. Первый включается при низких оборотах, второй при высоких.

Что такое турботаймер и для чего он необходим

Турботаймер

Другой стороной инерционности системы с турбокомпрессором является необходимость снижать обороты постепенно. Нельзя резко выключать зажигание после того, как двигатель работал на высоких оборотах. Это обусловлено тем, что подшипники будут продолжать вращение, а поскольку масло не будет подаваться в систему – возникнет повышенное трение. Оно, в свою очередь, спровоцирует быстрый износ вала турбины.

Для решения этой проблемы применяется турботаймер. Это устройство устанавливается на приборной панели и подключается в цепь зажигания. После выключения зажигания ключом система запускает таймер, который глушит двигатель спустя некоторое время, давая возможность турбине снизить обороты до приемлемых значений.

Виды турбокомпрессоров

Турбина с перепуском отработавших газов WGT.

В горячей улитке турбокомпрессора есть клапан Вестгейт (wastegate) выпускающий выхлопные газы в обход ротора турбины, для того чтобы ограничить рост давления турбокомпрессора выше заданного значения. Вследствие этого поток газов через турбину уменьшается, что снижает как степень сжатия воздуха турбиной, так и излишне высокие обороты вращения вала турбокомпрессора. При низких нагрузках на двигатель клапан закрывается, и весь поток отработавших газов направляется в турбину.

Турбина с изменяемой геометрией турбины VNT.

Турбина с изменяемой геометрией ТИГ (Variable-Nozzle Turbine — VNT, Variable-Turbine Geometry — VTG, Variable-Geometry Turbo — VGT) отличается от классических турбокомпрессоров наличием кольца из специальных лопастей (лопаток). Это дает возможность управлять потоком отработанных газов через турбину.
На малых оборотах двигателя лопатки находятся в полузакрытом состоянии. Выхлопным газам приходится «протискиваться» в узкие проходы между лопаток. Скорость газа возрастает (закон Бернулли) и он быстрее раскручивает турбину.
На повышенных оборотах двигателя
лопатки открываются. Сечение для прохода газов увеличивается, скорость падает, турбина крутится медленнее.

Турбина с дросселированием VST.

В двигателях легковых автомобилей небольшой мощности нашли применение турбины с золотниковым регулированием (VST Variable Sliding Turbine). Турбина VST работает аналогично турбине с неизменной геометрией, с той разницей, что первоначально открывается один из двух каналов золотника. При достижении максимально допустимого давления наддува золотник, непрерывно перемещаясь в осевом направлении, открывает второй канал. Каналы выполнены так, чтобы наибольшая часть потока отработавших газов направлялась к турбине. Оставшаяся часть отработавших газов, за счет дальнейшего перемещения регулирующего золотника, направляется в обход крыльчатки компрессора внутри турбонагнетателя.

Турбина с Twin-scroll (Твинскролл ) – двойная улитка.
Турбина типа «twin-scroll» отличается от обычной наличием двух каналов, разделяющих надвое рабочую камеру турбины. Таким образом, отработавшие газы подаются на турбину раздельно, за счет чего эффективнее используется импульсный наддув.

За счет чего достигается преимущество?
На четырехтактном двигателе порядок работы цилиндров (например у ЗМЗ-409) 1-3-4-2. Представим, что цилиндр 1 заканчивает свой цикл и достигает нижней точки, открывается выхлопной клапан. В то же время, цилиндр 2 заканчивает выхлопной цикл, закрывая выхлопной клапан и открывая впускной клапан. При наличии обычной одиночной турбины, давление выхлопа от цилиндра 1 будет препятствовать забору воздуха цилиндра 2, поскольку оба выхлопных клапана открыты. Так вот, если камеры разделить, проблема разрешится.
Вдобавок, в последнее время появились турбины с изменяемым Twin-scroll: на входе улитки турбины установлен распределительный клапан (Quick Spool Valve), который перенаправляет поток выхлопных газов в разные каналы. А если учесть, что у разных каналов разная геометрия то мы фактически получаем универсальную, управляемую турбину, которая хорошо работает и на низких и на высоких оборотах двигателя.

Твинскролл турбокомпрессор Borg Warner EFR-7163-J (VTV) с интегрированным QSV клапаном (с изменяемой геометрией)

Особенности эксплуатации турбированных двигателей

На режимах разгона автомобиля в силу инерционности системы возникает явление, получившее название «турбояма». Сущность явления заключается в следующем:

  • Автомобиль движется с небольшой постоянной скоростью.
  • Турбина вращается в соответствующем режиме.
  • При резком нажатии на педаль ускорения в цилиндры двигателя подается больше топлива.
  • После его сгорания образуются отработавшие газы, которые с большей силой воздействуют на турбину и увеличивают мощность двигателя. Однако происходит это с некоторой временной задержкой.

Таким образом, между моментом нажатия на педаль и фактическим ускорением автомобиля присутствует некоторая временная задержка — «турбояма». Также данное явление проявляется в виде недостатка крутящего момента на малых оборотах двигателя.

Виды систем турбонаддува

Производители разработали различные способы избавления от «турбоямы»:

  • Турбина с изменяемой геометрией. Конструкция предусматривает изменение сечения входного канала. За счет этого выполняется регулирование потока отработавших газов.
  • Два турбокомпрессора, установленных последовательно (Twin Turbo). На каждый режим работы (обороты двигателя) предусматривается свой компрессор.
  • Два турбокомпрессора, установленных параллельно (Bi Turbo). Схема разбиения на две турбины снижает инерцию системы, и турбояма становится не так ощутима.
  • Комбинированный наддув. Устройство предусматривает и механический, и турбонаддув. Первый включается при низких оборотах, второй при высоких.

Что такое турботаймер и для чего он необходим

Турботаймер

Другой стороной инерционности системы с турбокомпрессором является необходимость снижать обороты постепенно. Нельзя резко выключать зажигание после того, как двигатель работал на высоких оборотах. Это обусловлено тем, что подшипники будут продолжать вращение, а поскольку масло не будет подаваться в систему — возникнет повышенное трение. Оно, в свою очередь, спровоцирует быстрый износ вала турбины.

Для решения этой проблемы применяется турботаймер. Это устройство устанавливается на приборной панели и подключается в цепь зажигания. После выключения зажигания ключом система запускает таймер, который глушит двигатель спустя некоторое время, давая возможность турбине снизить обороты до приемлемых значений.

Об истории изобретения и внедрения турбонаддува

Итак, идея «пустить в дело» энергию отработанных выхлопных газов появилась уже вскоре после изобретения и успешных опытов применения двигателей внутреннего сгорания. Немецкие инженеры и первопроходцы автомобиле- и тракторостроения, во главе с Дизелем и Даймлером, провели первые опыты по повышению мощности двигателя и снижению расхода топлива с помощью нагнетания сжатого воздуха от выхлопов.

Готдиб Даймлер выпускал вот такие автомобили, а уже задумывался о внедрении системы турбонаддува

Но первым, кто построил первый эффективно работающий турбокомпрессор, стали не они, а другой инженер – Альфред Бюхи. В 1911 году он получил патент на своё изобретение. Первые турбины были таковы, что использовать их было возможно и целесообразно только на крупных двигателях (например, судовых).

Далее турбокомпрессоры начали использоваться в авиационной промышленности. Начиная с 30-х годов ХХ века, в Соединённых Штатах регулярно запускались в «серию» военные самолёты (как истребители, так и бомбардировщики), бензиновые двигатели которых были оснащены турбонагнетателями. А первая в истории грузовая автомашина с турбированным дизельным мотором была сделана в 1938 году.

В 60-е годы корпорация «Дженерал Моторс» выпустила первые легковые «Шевроле» и «Олдсмобили» с бензиновыми карбюраторными двигателями, оснащёнными турбонаддувом. Надежность тех турбин была невелика, и они быстро исчезли с рынка.

Oldsmobile Jetfire 1962 года – первый серийный автомобиль с турбонаддувом

Мода на турбированные моторы вернулась  на рубеже 70-х/80-х, когда турбонаддув начали широко использовать в создании спортивных и гоночных автомобилей. Приставка «турбо» стала чрезвычайно популярной и превратилась в своеобразный лейбл. В голливудских фильмах тех лет супергерои нажимали на панелях своих суперкаров «магические» кнопки «турбо», и машина уносилась вдаль. В реальной же действительности турбокомпрессоры тех лет ощутимо «тормозили», выдавая существенную задержку реакции. И, кстати, не только не способствовали экономии топлива, а наоборот, увеличивали его расход.

Труженик советских полей – трактор К-701 «Кировец» с турбонаддувом

Первые действительно успешные попытки внедрения турбонаддува в производство автомобильных двигателей серийного производства осуществили в начале 80-х годов «SAAB» и «Mercedes». Этим передовым опытом не замедлили воспользоваться и другие мировые машиностроительные компании.

В Советском Союзе разработка и внедрение в «серию» турбированных двигателей была связана, прежде всего, с развитием производства тяжёлых промышленных и сельскохозяйственных тракторов – «ЧТЗ», «Кировец»; суперсамосвалов «БелАЗ» и т.п. мощной техники.

Почему в итоге турбины получили распространение именно на дизельных, а не бензиновых двигателях? Потому что дизельные моторы имеют гораздо большую степень сжатия воздуха, а их выхлопные газы – более низкую температуру. Соответственно, требования к жаропрочности турбины гораздо меньше, а её стоимость и эффективность использования – гораздо больше.

Особенности турбированных двигателей

Принцип работы турбины состоит в принудительном нагнетании воздуха под давлением в цилиндры. Такое действие позволяет увеличить рабочий объем камеры сгорания за счет сильного сжатия, поэтому при равном объеме двигателя, разница в мощности между атмосферником и турбомотором колоссальная.

Главные предпосылки появления турбированных моторов:

  • Невозможность существенного увеличения мощности без увеличения объема и количества цилиндров (отсюда мы имеем агрегаты V8 и V12)
  • «Выжимание» максимальной мощности с помощью уменьшения камеры сгорания увеличивает степень сжатия, а значит работа двигателя без детонации невозможна. Детонация разрушает поршни.
  • Любые манипуляции по увеличению мощности атмосферника увеличивают расход топлива, а также делают невозможным комфортную эксплуатацию во всем диапазоне оборотов двигателя.

Изначально в массовое производство был запущен дизельный турбированный двигатель — такие моторы «наматывали» миллионы километров без особых проблем. В 80-х годах прошлого века среди легковых автомобилей начали появляться бензиновые турбоагрегаты.

Стоимость таких автомобилей существенно отличалась от обычных. До 90-х годов широко использовались механические нагнетатели, приводящиеся в движение через ремень от коленвала. Конструкция довольно проста и надежна, о чем свидетельствует яркий пример в лице двигателя Mercedes-Benz M111 E23 Compressor.

Позднее решено было переходить на турбокомпрессор, работающий от выхлопных газов, так как механический нагнетатель забирал значительную мощность на раскручивание лопастей.

Устройство

Первый контур вмещает в себя компрессоры высокого и низкого давления, камеру сгорания, турбины высокого и низкого давления и сопло. Второй контур состоит из направляющего аппарата и сопла. Такая конструкция является базовой, но возможны и некоторые отклонения, например, потоки внутреннего и внешнего контура могут смешиваться и выходить через общее сопло, или же двигатель может оснащаться форсажной камерой.

Теперь коротко о каждом составляющем элементе ТРДД. Компрессор высокого давления (КВД) – это вал, на котором закреплены подвижные и неподвижные лопатки, формирующие ступень. Подвижные лопатки при вращении захватывают поток воздуха, сжимают его и направляют внутрь корпуса. Воздух попадает на неподвижные лопатки, тормозится и дополнительно сжимается, что повышает его давление и придает ему осевой вектор движения. Таких ступеней в компрессоре несколько, а от их количества напрямую зависит степень сжатия двигателя. Такая же конструкция и у компрессора низкого давления (КНД), который расположен перед КВД. Отличие между ними заключается только в размерах: у КНД лопатки имеют больший диаметр, перекрывающий собой сечение и первого и второго контура, и меньшее количество ступеней ( от 1 до 5).

В камере сгорания сжатый и нагретый воздух перемешивается с топливом, которое впрыскивается форсунками, а полученный топливный заряд воспламеняется и сгорает, образуя газы с большим количеством энергии. Камера сгорания может быть одна, кольцевая, или же выполняться из нескольких труб.

Турбина по своей конструкции напоминает осевой компрессор: те же неподвижные и подвижные лопатки на валу, только их последовательность изменена. Сначала расширенные газы попадают на неподвижные лопатки, выравнивающие их движение, а потом на подвижные, которые вращают вал турбины. В ТРДД турбин две: одна приводит в движение компрессор высокого давления, а вторая – компрессор низкого давления. Работают они независимо и между собой механически не связаны. Вал привода КНД обычно расположен внутри вала привода КВД.

Сопло – это сужающаяся труба, через которую выходят наружу отработанные газы в виде реактивного потока. Обычно каждый контур имеет свое сопло, но бывает и так, что реактивные потоки на выходе попадают в общую камеру смешения.

Внешний, или второй, контур – это полая кольцевая конструкция с направляющим аппаратом, через которую проходит воздух, предварительно сжатый компрессором низкого давления, минуя камеру сгорания и турбины. Этот поток воздуха, попадая на неподвижные лопасти направляющего аппарата, выравнивается и движется к соплу, создавая дополнительную тягу за счет одного только сжатия КНД без сжигания топлива.

Форсажная камера – это труба, размещенная между турбиной низкого давления и соплом. Внутри у нее установлены завихрители и топливные форсунки с воспламенителями. Форсажная камера дает возможность создания дополнительной тяги за счет сжигания топлива не в камере сгорания, а на выходе турбины. Отработанные газы после прохождения ТНД и ТВД имеют высокую температуру и давления, а также значительное количество несгоревшего кислорода, поступившего из второго контура. Через форсунки, установленные в камере, подается топливо, которое смешивается с газами, и воспламеняется. В результате тяга на выходе возрастает порой в два раза, правда, и расход топлива при этом тоже растет. ТРДД, оснащенные форсажной камерой, легко узнать по пламени, которое вырывается из их сопла во время полета или при запуске.

форсажная камера в разрезе, на рисунке видны завихрители.

Самым важным параметром ТРДД является степень двухконтурности (к) – отношение количества воздуха, прошедшего через второй контур, к количеству воздуха, прошедшего через первый. Чем выше этот показатель, тем более экономичным будет двигатель. В зависимости от степени двухконтурности можно выделить основные виды двухконтурных турбореактивных двигателей. Если его значение к<2, это обычный ТРДД, если же к>2, то такие двигатели называются турбовентиляторными (ТВРД). Есть также турбовинтовентиляторные моторы, у которых значение достигает и 50-ти, и даже больше.

В зависимости от типа отведения отработанных газов различают ТРДД без смешения потоков и с ним. В первом случае каждый контур имеет свое сопло, во втором газы на выходе попадают в общую камеру смешения и только потом выходят наружу, образуя реактивную тягу. Двигатели со смешением потоков, которые устанавливаются на сверхзвуковые самолеты, могут снабжаться форсажной камерой, которая позволяет увеличивать мощность тяги даже на сверхзвуковых скоростях, когда тяга второго контура практически не играет роли.

Что ещё входит в систему турбонаддува

Турбина — сложный агрегат, инженерам потребовалось несколько десятилетий, чтобы довести систему до ума. Только на первый взгляд решение компенсировать потери КПД за счёт выхлопных газов кажется простой. Даже после создания устройства у него долгое время наблюдались определённые проблемы.

Например, не удавалось решить проблему турбоямы — задержки после нажатия на педаль газа и запуском ротора. Решение нашлось в виде использования двух клапанов. Один из них использовался для вывода излишек воздуха, а второй предназначался для выхлопных газов. Кроме того, современные турбины имеют изменённую геометрию лопаток, что серьёзно их отличает от подобных устройств второй воловины XX столетия.

Можно выделить ещё одну проблему, которая заключалась в излишней детонации — с ней тоже успешно справились современные инженеры. Проблема заключалась в том, что температура в рабочих секторах цилиндров резко увеличивалась во время нагнетания воздуха, особенно в последней стадии такта. Решение нашлось в установке интеркулера (промежуточного охладителя воздуха).

Интеркулер — устройство для охлаждения наддувочного воздуха. Он выполняет сразу две функции — препятствует детонации и не даёт уменьшиться плотности воздуха. В результате удалось сохранить работоспособность всей системы.

Также стоит отметить и другие важные составляющие турбины.

Регулировочный клапан. Отвечает за поддержание заданного уровня давления, излишки давления поступают в приёмную трубу.

Перепускной клапан. Используется для вывода излишних воздушных масс обратно во впускные патрубки — это нужно для снижения мощности при её избытке.

Стравливающий клапан. Если дроссель закрывается и нет датчика массового расхода воздуха, клапан будет возвращать излишки воздуха обратно в атмосферу.

Патрубки. Герметичные отрезки трубы. Одни используются для подачи воздуха, вторые для подачи смазочного масла.

Выпускные коллекторы. Должны быть совместимы с турбокомпрессором.

Для устранения эффекта турбоямы используются три основных метода:

  • Использование системы с двумя (и более) турбокомпрессорами. Турбины могут устанавливаться параллельно – это допускается на двигателях V-образного типа. При этом каждая турбина устанавливается на свой ряд цилиндров. Идея данного метода в том, что две турбины меньшего размера обладают более низкой инерционностью, чем одна большая турбина. Турбины так же могут устанавливаться и последовательно, причем их может быть от двух до четырех (Bugatti). Увеличение производительности и максимальная эффективность турбонаддува в этом случае достигаются за счет того, что при разных оборотах двигателя используется свой турбокомпрессор.
  • Использование турбины с изменяемой геометрией. Подобный метод обеспечивает более рациональное использование энергии отработанных газов за счет изменения площади сечения входного канала турбины. Данный метод весьма часто используется на дизельных двигателях, например всем известная система TDI от Volkswagen.
  • Использование комбинированного типа турбонаддува. Данный метод позволяет применять симбиоз двух систем – механического и турбинного наддува. Механический наддув эффективен на малых оборотах коленвала, при которых сжатие воздуха обеспечивается нагнетателем механического типа. Турбонаддув применяется при высоких оборотах коленвала, где функцию нагнетания воздуха берет на себя турбинный компрессор. Наиболее распространенной системой комбинированного наддува является наддув двигателя TSI от Volkswagen.

Как я могу определить отказ турбины?

Об этом мы писали подробную обзорную статью: Неисправности турбин: эксплуатация, неисправности, восстановление и ремонт

Признаки неисправностей турбокомпрессора
Симптом: Проявления: Что необходимо сделать:
Свист турбонагнетателя

При увеличении скорости слышен свист турбины. Возможно, поврежден вал турбины. Свист вызван из-за металлического трения.

Замена турбокомпрессора / Ремонт
Синий дым

Утечка масла в турбокомпрессоре. Возможно на валу есть сколы (износ). Масло попадает в выхлопную систему. 

Замена турбокомпрессора / Ремонт
Увеличился расход топлива Повреждение подшипников турбокомпрессора. Линия подачи масла в турбину неисправна или забита. Проверьте маслопроводы турбокомпрессора и при необходимости замените их
Черный дым

Возможно, турбине не хватает воздуха для подачи в двигатель. В результате в камере сгорания неправильная смесь топлива и кислорода. В итоге в процессе сгорания топлива образовывается черный дым. Скорее всего, в автомобиле есть утечка, поступаемого в двигатель, воздуха. 

Проверьте шланги и соединение системы всасывания воздуха. Также проверьте линию подачи сжатого воздуха на герметичность и при необходимости замените поврежденный компонент. 
Потеря мощности I Недостаток постоянной мощности. Компрессор может быть поврежден. Например, из-за сломанных лопастей колес, турбина больше не может подавать достаточное количество воздуха в цилиндры. Необходимы новые колеса компрессора колеса. Также необходимо защитить систему подачи воздуха в турбину от попадания инородных вещей. 
Потери мощности II Блок VTG загрязнен. В итоге работа лопаток турбины с изменяемой геометрией не эффективна. Например, из-за загрязнения лопаток может не хватать давления выхлопных газов.  Разобрать турбину и очистить лопатки, от образования сажи.
Чрезмерное давление наддува Неисправен клапан регулирования давления наддува. Неисправность вакуумного блока регулировки работы клапана. Замена вакуумного блока, очистка или замена клапана выхлопных газов
Шум от турбокомпрессора Обратное давление в выхлопной системе слишком высокое. Повреждение колеса компрессора или колеса турбины. Утечка выхлопных газов.  Проверьте выхлопную систему на наличие повреждений. Проверьте компрессор турбины на повреждения. Устраните неисправность с помощью ремонта турбокомпрессора.

Принцип работы

Компрессор втягивает воздух, сжимает его и направляет в камеру сгорания. В ней сжатый воздух смешивается с топливом, воспламеняется и расширяется. Расширенный газ заставляет вращаться турбину, которая расположена на одном валу с компрессором. Остальная часть энергии перемещается в сужающееся сопло. В результате направленного истечения газа из сопла на двигатель действует реактивная тяга. При горении топлива воздух, служащий рабочим телом, нагревается до 1500-2000 градусов цельсия.

В полёте поток воздуха тормозится во входном устройстве перед компрессором, в результате чего его температура и давление повышается. На земле во входном устройстве воздух ускоряется, его температура и давление снижаются.

Проходя через компрессор, воздух сжимается, его давление повышается в 10—45 раз, возрастает его температура. Компрессоры газотурбинных двигателей делятся на осевые и центробежные. В наши дни в двигателях наиболее распространены многоступенчатые осевые компрессоры. Центробежные компрессоры, как правило, применяются в малогабаритных силовых установках.

Далее сжатый воздух попадает в камеру сгорания, в так называемые жаровые трубы, либо в кольцевую камеру сгорания, которая не состоит из отдельных труб, а является цельным кольцевым элементом. В наши дни кольцевые камеры сгорания являются наиболее распространёнными. Трубчатые камеры сгорания используются гораздо реже, в основном на военных самолётах. Воздух на входе в камеру сгорания разделяется на первичный, вторичный и третичный. Первичный воздух поступает в камеру сгорания через специальное окно в передней части, по центру которого расположен фланец крепления форсунки, и участвует непосредственно в окислении (сгорании) топлива (формировании топливо-воздушной смеси). Вторичный воздух поступает в камеру сгорания сквозь отверстия в стенках жаровой трубы, охлаждая, придавая форму факелу и не участвуя в горении. Третичный воздух подаётся в камеру сгорания уже на выходе из неё, для выравнивания поля температур. При работе двигателя в передней части жаровой трубы всегда вращается вихрь раскалённого газа (что обусловлено специальной формой передней части жаровой трубы), постоянно поджигающего формируемую топливовоздушную смесь, происходит сгорание топлива (керосина, газа), поступающего через форсунки в парообразном состоянии.

Газовоздушная смесь расширяется и часть её энергии преобразуется в турбине через рабочие лопатки в механическую энергию вращения основного вала. Эта энергия расходуется, в первую очередь, на работу компрессора, а также используется для привода агрегатов двигателя (топливных подкачивающих насосов, масляных насосов и т. п.) и привода электрогенераторов, обеспечивающих энергией различные бортовые системы.

Основная часть энергии расширяющейся газовоздушной смеси идёт на ускорение газового потока в сопле и создание реактивной тяги.

Чем выше температура сгорания, тем выше КПД двигателя. Для предупреждения разрушения деталей двигателя для их изготовления используют жаропрочные сплавы и термобарьерные покрытия. А также применяется система охлаждения воздухом, отбираемым от средних ступеней компрессора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector