Назначение рулевого управления – Назначение и устройство рулевого управления

Содержание

Назначение и устройство рулевого управления

Категория:

   1Отечественные автомобили

Публикация:

   Назначение и устройство рулевого управления

Читать далее:



Назначение и устройство рулевого управления

Назначение рулевого управления. Рулевое управление предназначено для обеспечения движения автомобиля по заданному водителем направлению. Оно состоит из рулевого механизма и рулевого привода. Конструкция рулевого механизма и рулевого привода должна обеспечить точность управления автомобилем, надежность работы всех узлов и деталей* не требовать от водителя затраты больших усилий и не передавать на рулевое колесо толчки, воспринимаемые колесами автомобиля.

Чтобы автомобиль двигался на повороте без бокового скольжения колес, все колеса должны совершать качение по дугам, описанным из одного центра, лежащего на продолжении задней оси автомобиля. При этом передние управляемые колеса автомобиля необходимо поворачивать на разные углы. Внутреннее (по отношению к центру поворота) колесо должно быть повернуто на больший угол, наружное колесо — на меньший угол. Такая схема поворота достигается применением в рулевом приводе трапеции с шарнирными соединениями.

Рулевой механизм. Существует несколько типов рулевого механизма. Наиболее распространенными из них являются червяк — ролик, червяк — сектор и винт — шариковая гайка.

Рекламные предложения на основе ваших интересов:

Рулевой механизм типа червяк — ролик применяется на большинстве легковых автомобилей и многих грузовых автомобилях. На рис. 1 показано устройство рулевого механизма этого типа автомобиля ГАЗ-53А. В картере рулевого механизма на двух конических роликовых подшипниках вращается глобоидальный червяк, установленный на конце вала руля.

Рис. 1. Схема поворота управляемых колес автомобиля: а — угол поворота внешнего колеса, Р — угол поворота внутреннего колеса; 1 — поперечная рулевая тяга, 2 — передний мост, 3 — рычаги поворотных цапф

В зацепление с червяком входит трехгребневый ролик, вращающийся на двух игольчатых подшипниках. Между подшипниками установлена распорная втулка. Ось ролика закреплена в головке вала рулевой сошки. Опорами вала рулевой сошки служат с одной стороны роликовый подшипник, а с другой — бронзовая втулка. Рулевая сошка соединена со своим валом мелкими шлицами и закреплена гайкой 15. Конец вала рулевой сошки уплотнен сальником. Для регулировки затяжки подшипников рулевого вала под нижней крышкой картера установлены прокладки.

Зацепление рабочей пары рулевого механизма выполнено таким образом, что при положении, соответствующем прямолинейному движению автомобиля, свободный ход рулевого колеса должен отсутствовать. По мере поворота руля в ту или иную сторону зазор между червяком и роликом и свободный ход I рулевого колеса возрастают. Регулировку зацепления червяка с роликом осуществляют смещением вала рулевой сошки в осевом на- I правлении при помощи регулировочного винта. Винт установлен в боковой крышке ! картера рулевого механизма, снаружи закрыт колпачковой гайкой 8 и фиксируется стопорной шайбой, закрепленной штифтом.

Рулевой механизм типа червяк — ролик обеспечивает наименьшие потери на трение. Благодаря этому требуется меньшее усилие водителя на управление автомобилем и снижается износ деталей.

У автомобилей большой грузоподъемности рулевой механизм имеет большее передаточное число для облегчения управления, при этом не допускается возникновения значительных удельных давлений между поверхностями рабочей пары.

В связи с этим на таких автомобилях применяют рулевой механизм типа червяк — сектор с большой поверхностью зацепления или механизм с двумя рабочими парами типа винт — гайка и рейка — сектор.

Рулевой механизм типа червяк — сектор наиболее прост по конструкции. В зацепление с глобоидальным червяком входит боковой сектор в виде части шестерни со спиральными зубьями, выполненный заодно целое с валом сошки. Зазор в зацеплении червяка с сектором не является постоянным. Наименьшее значение зазора соответствует среднему положению рулевого колеса.

Рис. 2. Рулевой механизм типа червяк—ролик: 1 — картер механизма, 2 — вал сошки, 3 —- трехгребневый ролик, 4 — прокладка. 5 — червяк, б — пробка, 7 — стопорная шайба, 8 — колпачковая гайка, 9 —- ось ролика, 10 — вал руля, 11 — регулировочный винт, 12 — стопорный штифт, 13 — сальник, 14 — рулевая сошка, 15 — гайка, 16 — бронзовая втулка

При повороте рулевого колеса в ту или другую сторону величина зазора увеличивается в зависимости от угла поворота, достигая максимального значения в крайних положениях. Такое распределение зазора облегчает маневрирование с большими углами поворота руля и достигается постепенным понижением высоты зубьев сектора от середины к крайним точкам. При сборке правильность установки механизма проверяют по меткам, имеющимся на червяке и секторе.

Сошка посажена на вал, вращающийся в двух игольчатых подшипниках, между которыми установлена распорная втулка. При этом зазор в зацеплении червяк — сектор легко регулируется изменением толщины упорной шайбы, расположенной между боковой поверхностью сектора и крышкой картера рулевого механизма.

Рис. 3. Рулевой механизм со встроенным гидроусилителем: 1 — шкив привода насоса, 2 — насос гидроусилителя, 3 — бачок насоса, 4 — фильтр, 5 — предохранительный клапан фильтра, б—линия слива, перепускной клапан, 8 предохранительный клапан, 9 – трубопровод высокого давления, 10 — поршень-рейка. 11 — картер рулевого механизма. 12 — винт, 13 — шарик, 14 — шариковая гайка, 15 — упорный шарикоподшипник, 16 — корпус клапана управления, 17 — обратный клапан, 18 —золотник, 19 — регулировочная гайка, 20 – пружинная шайба, 21 — пружина реактивного плунжера, 22 — реактивный плунжер, 23 — зубчатый сектор, 4 — сошка, 25 — статор насоса, 26 — ротор насоса, 27 — полость всасывания, 28 — полость нагнетания, 29 — лопасти

Рулевой механизм типа винт — гайка и рейка — сектор применяется на многих грузовых автомобилях (ЗИЛ-130, КамАЗ всех моделей и др.), устройство его показано на рис. 3.

Вал рулевого механизма, установленный в шариковых подшипниках, имеет на конце винт. На винте закреплена шариковая гайка, входящая в поршень-рейку. При повороте рулевого вала рейка-поршень перемещается вдоль его оси. Осевое перемещение рейки-поршня, имеющей на наружной поверхности зубья, вызывает поворот зубчатого сектора, установленного на валу сошки. Сошка через рулевой привод осуществляет поворот передних колес.

В гайке и винте выполнены полукруглые винтовые канавки. В них свободно перекатываются шарики. Чтобы шарики не выпадали из винтовых канавок, в пазы гаики вставлены штампованные направляющие, представляющие собой замкнутый желоб. Поворот винта вызывает перекатывание шариков по желобу. При этом они выходят с одной стороны гайки и возвращаются в нее с противоположной стороны. Наличие шариков значительно облегчает поворачивание вала рулевого механизма.

Рулевой механизм соединен с валом рулевой колонки при помощи карданного вала с двумя шарнирами. Это вызвано трудностью размещения рулевого управления обычной конструкции на автомобиле, имеющем V-образный двигатель и максимально приближенную к нему кабину.

Травмобезопасная рулевая колонка. При фронтальных ударах автомобиля, в случае аварии, водитель может быть травмирован рулевым колесом. Чтобы максимально уменьшить опасность удара водителя о рулевое колесо, на легковых автомобилях последних моделей устанавливают трав-мобезопасную рулевую колонку. Так, на автомобиле «Москвич-1500» рулевая колонка телескопического типа состоит из трубчатых частей, которые могут входить одна в другую.

При ударе о рулевое колесо нижняя часть рулевого вала получает осевое перемещение в упругой с прорезями шлицевой втулке, а верхняя и нижняя части трубы рулевой колонки входят в среднюю часть трубы. Энергия удара поглощается трением между перемещающимися деталями.

Само рулевое колесо с утопленной ступицей и мягкой накладкой снижает опасность удара о него.

Водитель, наблюдая за дорогой, управляет автомобилем при помощи рулевого управления. Назначение рулевого управления — изменять направление движения автомобиля так, чтобы при повороте автомобиля качение его колес по дороге происходило по возможности без проскальзывания. Последнее очень важно, так как боковое скольжение шин вызывает их повышенный износ и ухудшает устойчивость движения автомобиля.

Рулевое управление состоит из рулевого механизма и рулевого привода. Иногда в рулевое управление включен усилитель.

Рулевым механизмом называют замедляющую передачу, преобразующую вращение вала рулевого колеса во Вращение вала сошки. Этот механизм увеличивает приложенное к рулевому колесу усилие водителя и облегчает его работу.

Рулевым приводом называют систему тяг и рычагов, осуществляющую в совокупности с рулевым механизмом поворот автомобиля. Рулевой привод (или рулевая трапеция) служит для поворота управляемых колес автомобиля на разные углы, что необходимо для качения колес без бокового проскальзывания. Рулевая трапеция представляет собой шарнирный четырехугольник, образуемый центральной частью передней оси, поперечной рулевой тягой и поворотными рычагами. Последние соединены с поворотными цапфами, на которых насажены управляемые колеса.

Рис. 4. Схема поворота автомобиля и рулевая трапеция: а — схема поворота; б — схема рулевой трапеции; R — радиусы поворота колес; 1 к 8 — поворотные цапфы; 2 и 6 — поворотные рычаги; 3 — передняя ось; 4 — поперечная рулевая тяга; 5 — рычаг

Рулевой механизм соединен с левой поворотной цапфой, продольной рулевой тягой и рычагом. Сошкой рулевого механизма перемещают продольную рулевую тягу вперед или назад, вызывая этим поворот управляемых колес влево или вправо.

Благодаря наличию рулевой трапеции управляемые колеса повертываются на разные углы: внутреннее (ближайшее к центру поворота) колесо на больший угол, чем внешнее. Разница в углах поворота определяется величиной угла наклона поворотных рычагов трапеции.

Схема рулевого привода передних управляемых колес, показанная на рис. 4, соответствует принятому на отечественных автомобилях расположению рулевого колеса при правостороннем движении.

Рекламные предложения:


Читать далее: Гидроусилитель рулевого управления

Категория: — 1Отечественные автомобили

Главная → Справочник → Статьи → Форум


stroy-technics.ru

Рулевое управление. Назначение и устройство

Назначение рулевого управления

Для осуществления движения транспортного средства (ТС) по выбираемой водителем траектории служит рулевое управление (РУ), конструкция которого во многом определяет безопасность движения и утомляемость водителя. К рулевому управлению ТС предъявляются специфические требования, основными из которых являются:

  • обеспечение высокой маневренности ТС
  • легкость управления (за счет применения усилителей рулевого управления)
  • обеспечение по возможности чистого качения (без бокового скольжения) всех колес ТС при поворотах (за счет правильной конструкции привода)
  • автоматическая стабилизация управляемых колес, т.е. возвращение их в состояние прямолинейного движения после снятия воздействия со стороны водителя
  • необратимость рулевого управления — отсутствие передачи ударов управляемых колес о неровности дороги на руки водителя
  • обеспечение следящего действия (любое воздействие водителя на рулевое управление должно вызывать соответствующее изменение направления движения)

Рулевое управление

Рис. Рулевое управление:
1 — масляный радиатор; 2, 4 — валы; 3 — рулевая колонка; 5 — рулевое колесо; 6 — насос гидроусилителя руля; 7 — рулевой механизм; 8 — сошка

Система рулевого управления представляет собой совокупность устройств, служащих для поворота управляемых колес автомобиля при воздействии водителя на рулевой управляющий орган (рулевое колесо).

Устройство рулевого управления

Рассмотрим устройство рулевого управления колесных машин с управляемыми колесами. Конструктивно рулевое управление состоит из:

  • рулевого механизма;
  • усилителя;
  • рулевого привода.

Компоновка рулевого управления грузового автомобиля с управляемыми колесами первой оси (КамАЗ, МАЗ) показана на рисунке. Использование регулируемых рулевых колонок позволяет менять угол наклона ступенчато, как правило, с шагом 5° в пределах до 40°. Рулевое управление с передними управляемыми колесами применяется у двух- и трехосных автомобилей. Компоновка и конструкция рулевого управления сравнительно просты и принципиально могут быть сведены к схемам, приведенным на рисунке.

Схемы рулевого управления автомобилей с управляемыми колесами передней оси

Рис. Схемы рулевого управления автомобилей с управляемыми колесами передней оси:
а — с задней неразрезной трапецией; б — с разрезной трапецией и маятниковым рычагом; в — с реечным рулевым механизмом; г — с разрезной трапецией и двумя маятниковыми рычагами; д — с расчлененным рулевым валом; е — с передней неразрезной трапецией; ж — с разрезной трапецией и двумя маятниковыми рычагами, направленными назад; з — с неразрезной трапецией и одним маятниковым рычагом; и — с неразрезной трапецией и объединенным рулевым усилителем; к — с неразрезной трапецией и раздельным рулевым усилителем

На четырехосных автомобилях чаще всего устанавливают рулевое управление с поворотом колес первой и второй осей, первой и четвертой, либо всех осей.

Для многоосных (шестиосных) шасси большой грузоподъемности используют рулевое управление с поворотом колес первых трех осей (в последних схемах для повышения маневренности применяют поворотные колеса самоустанавливающегося типа на шестой оси). При прямолинейном движении автомобиля самоустанавливающиеся колеса, связанные друг с другом приводом, блокируются специальным устройством. При движении в повороте с повышенной кривизной траектории эти колеса разблокируются и свободно поворачиваются в режиме слежения.

Видео: Рулевое управление

ustroistvo-avtomobilya.ru

1. Назначение рулевого управления

Министерство образования и науки РФ

ФГБОУ ВПО «Волгоградский государственный технический университет»

Факультет Автомобильного транспорта

Кафедра «Автомобильный транспорт»

Семестровая работа

по дисциплине «Сертификация транспортных средств»

На тему: «Обеспечение безопасного уровня рулевого управления »

Выполнил: ст. гр. АТ – 500

Джавадов А.А.

Проверил: Шустов А.В.

Волгоград 2013

Содержание

Введение……………………………………………………………………………3

1. Назначение рулевого управления……………………………………………..5

2. Конструкция рулевого управления……………………………………………7

3.Основные типы рулевых механизмов и приводов……………………………9

3.1.Рулевой механизм…………………………………………………………..9

3.2.Рулевой привод……………………………………………………………10

4. Перспективы и недостатки развития рулевого управления………………..12

4.1 Гидроусилитель рулевого управления (ГУР)……………………………12

4.2 Электороусилитель…………………………………………………..……14

4.3 Преимущества и недостатки………………………………………..……15

5.Травмобезопасный рулевой механизм……………………………………….17

6. Технические требования к рулевому управлению по ГОСТ Р 41.12-2001..18

Заключение……………………………………………………………………….22

Список использованных источников……………………………………………23

Введение

Потребность людей в необходимости ускоренного перемещения по земле привела человечество к созданию различных машин и механизмов, наиболее удобным и любимым из которых стал автомобиль.

Слово ”автомобиль” означает “самодвижущаяся повозка”, хотя в современном понимании автомобилями принято называть только средства передвижения, оснащенные автономными двигателями (внутреннего сгорания, электрическими, паровыми).

Интересную историю развития прошел рулевой механизм автомобиля. Сейчас никого не удивишь его месторасположением — для правостороннего движения — слева, для левостороннего — справа. Но такое расположение рулевого колеса определилось не сразу. Строгое деление проезжей части на левую и правую стороны движения возникло только в XX веке, а на улицах с не слишком оживленным движением продолжали ездить как придется. Вплоть до 60-х годов XX века не было отдано предпочтения движению по определенной стороне улицы. Англия, ее бывшие колонии, Япония до сих пор придерживаются левого, Швеция перестроилась слева направо лишь в 1967 году, Австрия, Венгрия и Чехословакия — в 30-х годах. В Милане ездили по левой стороне, а на остальной территории Италии — по правой. При таком разнообразии правил не могло быть единого взгляда на расположение руля. Когда же вместо рычага появилась рулевая колонка, которая должна была находиться непосредственно перед водителем, конструкторы проявили единодушие — руль устанавливать только справа. Именно поэтому руль, практически у всех первых автомобилей, находился справа. Особый интерес вызывают методы управления первыми автомобилями ХХ века. Рабочее место водителя содержало такое большое количество всевозможных ручек и рычагов управления, что не мудрено было запутаться в них. Одних только тормозных рычагов было три — на трансмиссионный вал, на задние колеса и на так называемый «горный упор» — остроконечный стержень, который опускали на дорогу при движении на подъем, так как тормоза на уклоне автомобиль не удерживали (прообраз современного «стояночного тормоза»). Можно ли дотянуться до рычага, удобно ли ими пользоваться — конструктора это мало интересовало. Рычаг устанавливали там, где этого требовала конструкция. Тем самым водителя обрекали на акробатические движения. Но это длилось не долго. Автомобилей становилось больше, появилась возможность выбора, и уже не все водители были согласны на такую «акробатику». Было бы логичным сосредоточить рычаги и ручки в одном месте, поближе к рукам водителя. Таким местом избрали рулевую колонку. Когда ее наклонили (впервые на автомобиле «Латиль» в 1898 году), то управление передачами с колонки уже не получалось. Одновременно обнаружилось, что скопление рычагов и рукояток около рулевого колеса создает путаницу. Часть их заменили педалями.

В начале ХХ века управление автомобилем требовало от водителя хорошей физической формы. Естественным выходом было увеличение в рулевом управлении передаточного числа, но это не давало решение проблемы. В 1925 году американец Фрэнсис Дейвис запатентовал специальное устройство под названием «гидравлический усилитель рулевого управления». Правда, конструкция мгновенного успеха не обрела. Однако принцип и путь совершенствования наметились: с конца 30-х – начала 40-х годов в Америке, а затем и в Европе конструкторы начинают ставить ГУР на некоторые свои модели автомобилей. Сегодня этим устройством оснащается весь грузовой автотранспорт и немалая доля легкового.

Измене­ние направления движения автомобиля осуществляется поворотом относитель­но его продольной оси управляемых ко­лес, которыми, как правило, являются передние колеса.

Вследствие поворота управляемых ко­лес вектор скорости каждого из них, па­раллельный продольной оси автомоби­ля, перестает совпадать с плоскостью вращения колес. В результате в контак­те колес с дорогой возникают боковые силы, перпендикулярные плоскости вра­щения колес. Эти боковые силы застав­ляют управляемые колеса и автомобиль в целом отклоняться от прямолинейно­го движения и совершать поворот.

Руле­вое управление обеспечивает необходи­мое направление движения автомобиля путем раздельного и согласованного по­ворота его управляемых колес. Сово­купность механизмов, служащих для по­ворота управляемых колес, называется рулевым управлением.

Рулевое управление служит для изменения направления движения автомобиля. При неподвижной передней оси изменение направления движения автомобиля осуществляется поворотом передних управляемых колес.

Рулевое управление со­стоит из рулевого колеса, соединенного валом с рулевым механизмом, и руле­вого привода. Иногда в рулевое упра­вление включен усилитель.

Рулевым механизмом называют замедляющую передачу, преобразующую вращение вала рулевого колеса во вра­щение вала сошки. Этот механизм уве­личивает прикладываемое к рулевому колесу усилие водителя и облегчает его работу.

Рулевым приводом называют систему тяг и рычагов, осуществляющую в сово­купности с рулевым механизмом пово­рот автомобиля.

Для того чтобы при движении автомобиль совершил поворот без бокового скольжения колес, все они должны катиться по дугам разной длины, описанным из центра поворота “ О ” (рис.1). При этом передние управляемые колеса должны поворачиваться на разные углы. Внутреннее по отношению к центру поворота колесо должно поворачиваться на угол альфа-В, наружное — на меньший угол альфа-Н. Это обеспечивается соединением тяг и рычагов рулевого привода в форме трапеции. Основанием трапеции служит балка переднего моста автомобиля, боковыми сторонами являются левый и правый поворотные рычаги, а вершину трапеции образует поперечная тяга, которая соединяется с рычагами шарнирно. К рычагам жестко присоединены поворотные цапфы колес.

Рисунок 1- Схема поворота автомобиля

где:1 -балка переднего моста автомобиля;2 и 4- поворотные рычаги; 3-поперечная тяга;5-поворотные цапфы колес;6-продольная тяга.

2. Конструкция рулевого управления

Расположение и взаимодействие деталей рулевого управления, не имеющего усилителя, можно рассмотреть на схеме (рис.2.а). Здесь рулевой механизм состоит из рулевого колеса, рулевого вала и рулевой передачи , образованной зацеплением червячной шестерни (червяка) с зубчатым стопором, на вал которого крепится сошка рулевого привода. Сошка и все остальные детали рулевого управления: продольная тяга , верхний рычаг левой поворотной цапфы , нижние рычаги левой и правой поворотных цапф, поперечная тяга составляют рулевой привод.

Поворот управляемых колес происходит при вращении рулевого колеса, которое через вал передает вращение рулевой передаче. При этом червяк передачи, находящийся в зацеплении с сектором, начинает перемещать сектор вверх или вниз по своей нарезке. Вал сектора приходит во вращение и отклоняет сошку, которая своим верхним концом насажена на выступающую часть вала сектора. Отклонение сошки передается продольной тяге, которая перемещается вдоль своей оси. Продольная тяга связана через верхний рычаг с поворотной цапфой, поэтому ее перемещение вызывает поворот левой поворотной цапфы. От нее усилие поворота через нижние рычаги и поперечную тягу передается правой цапфе. Таким образом происходит поворот обоих колес.

Управляемые колеса поворачиваются рулевым управлением на ограниченный угол, равный 28-35°. Ограничение вводится для того, чтобы исключить при повороте задевание колесами деталей подвески или кузова автомобиля.

Конструкция рулевого управления очень сильно зависит от типа подвески управляемых колес. При зависимой подвеске передних колес в принципе сохраняется схема рулевого управления, приведенная на (рис. 2.(а)), при независимой подвеске (рис. 2.(б)) рулевой привод несколько усложняется.

Рисунок 2-Схемы рулевого управления:

а) при зависимой подвеске передних колес

где: 1-рулевоя передача; 2-рулевой вал; 3-рулевое колесо; 4- поворотные цапфы; 5и 7-поворотные рычаги; 6-поперечная тяга; 8-продольная тяга; 9 –сошка;

б) при независимой подвеске

где: 1-сошка; 2-поворотные рычаги цапф; 3 и 6- боковые тяги; 4-основная поперечная тяга; 5-маятниковый рычаг.

studfile.net

Назначение и общее устройство рулевого управления автомобиля

Рулевое управление служит для изменения направления движения автомобиля. Изменяют направление при помощи поворота передних направляющих колес.

В рулевое управление входят рулевой механизм и рулевой привод.

Рулевой механизм

Рулевой механизм служит для передачи усилия от рулевого колеса к рулевой сошке.

Рулевой механизм состоит из рулевого колеса 9, рулевого вала 10, рулевой колонки 8, картера 6 с рулевой передачей и вала 5 рулевой сошки 4.

Рис. Схема рулевого управления: 1 — поворотный кулак; 2 — верхний рычаг левого поворотного кулака; 3 — продольная рулевая тяга; 4 — рулевая сошка; 5 — вал рулевой сошки; 6 — картер рулевого механизма; 7 — червяк; 8 — рулевая колонка; 9 — рулевое колесо; 10 — рулевой вал; 11 — ролик; 12 — поперечная рулевая тяга; 13 — наконечник поперечной тяги; 14 — нижняя тяга

На автомобилях применяются главным образом следующие типы рулевых передач: глобоидальный червяк с двух- или с трехгребневым роликом и червяк с боковым сектором.

Рулевая передача, состоящая из глобоидального червяка и ролика, устроена следующим образом. На нижнем конце рулевого вала 8 напрессован глобоидальный червяк 5 (червяк со специальной резьбой). Опорами для червяка служат два роликоподшипника 3. С червяком зацепляется своими гребнями ролик 10, сидящий на шариковых 14 или на игольчатых подшипниках на оси 15, смонтированной в прорези головки 16 вала 11 рулевой сошки 17.

Рис. Рулевая передача с глобоидальным червяком и двухгребневым роликом (автомобили ГАЗ-63 и ГАЗ-51 А): 1 — нижняя крышка картера; 2 — регулировочные прокладки; 3 — роликоподшипник червяка; 4 — картер; 5 — глобоидальный червяк; 6 — пробка заливного отверстия; 7 — верхняя крышка картера; 8 — рулевой вал; 9 — роликоподшипник вала сошки; 10 — двухгребневый ролик; 11 — вал рулевой сошки; 12 — бронзовая втулка; 13 — сальниковое уплотнение; 14 — шарикоподшипник ролика; 15 — ось ролика; 16 — головка вала сошки; 17 — рулевая сошка

При вращении рулевого колеса червяк заставляет находящийся с ним в зацеплении ролик вместе с рулевой сошкой поворачиваться относительно оси вала сошки. Вогнутая форма червяка обеспечивает правильное зацепление пары червяк — ролик в различных положениях рулевой сошки. Установка ролика на подшипниках качения уменьшает потери на трение и износ (при вращении червяка ролик не скользит по поверхности его резьбы, а перекатывается).

Рис. Рулевая передача с цилиндрическим червяком и боковым сектором (автомобили КрАЗ-214 и КрАЗ-219): 1 — сальниковое уплотнение подшипников червяка; 2 — роликоподшипник червяка; 3 — цилиндрический червяк; 4 — рулевой вал; 5 — пробка заливного отверстия; 6 — регулировочные прокладки; 7 — картер; 8 — боковой сектор; 9 — игольчатые подшипники; 10 — пробка сливного отверстия; 11 — сальник; 12 — рулевая сошка

Рулевая передача, состоящая из червяка и бокового сектора, показана на рисунке. Для этой передачи применяется цилиндрический червяк 3. Червяк напрессован на рулевой вал 4 и опирается на два роликоподшипника 2. Червяк находится в зацеплении со спиральными зубьями бокового сектора 8, который выполнен заодно с валом рулевой сошки и вращается в картере 7 на двух игольчатых подшипниках 9. Такого типа передачи применяются на автомобилях большой грузоподъемности, где через рулевое управление передаются большие усилия.

Рулевые передачи размещаются в литом картере, заполненном, маслом. В картере имеются обычно два отверстия: верхнее, закрытое пробкой 5, для заливки масла и нижнее, закрытое пробкой 10, для слива масла. Картер рулевого механизма крепится при помощи болтов к раме автомобиля.

Для обеспечения нормальной работы рулевой передачи в ней регулируются осевой зазор червяка в подшипниках и правильность зацепления передаточной пары.

Рулевая передача значительно облегчает работу водителя. Однако на автомобилях большой грузоподъемности усилие, которое должен прикладывать водитель к рулевому колесу, бывает настолько велико, что уменьшить его, только увеличив передаточное число в рулевой передаче, не удается. Поэтому на автомобилях типа КрАЗ-214 применяются специальные устройства — усилители рулевого управления, которые облегчают управление автомобилем и резко снижают усилие, необходимое для поворота рулевого колеса.

Рулевой привод

Рулевой привод служит для передачи усилия от рулевого механизма к управляемым колесам. Он состоит из рулевой сошки 1, продольной рулевой тяги 7, верхнего рычага 11 левого поворотного кулака, правого и левого нижних рычагов 24 поворотных кулаков 25 и поперечной рулевой тяги 14. Перечисленные детали соединены между собой шарнирно.

Рулевая сошка одним концом жестко связана с наружным концом вала, а другим через продольную рулевую тягу 7 шарнирно соединена с верхним рычагом 11 поворотного кулака 25 левого колеса. Крепление рулевой сошки к валу осуществляется на мелких конусных шлицах при помощи гайки.

Продольная рулевая тяга соединяется с рулевой сошкой и рычагом поворотного кулака при помощи шаровых пальцев 2, закрепленных на концах сошки и рычага. Шаровые пальцы входят в наконечники 5 продольной рулевой тяги, в которых установлены сухари 8. Сухари охватывают шаровые пальцы, под действием сжимающих пружин 4. Пробки 9, ввернутые в наконечники продольной рулевой тяги, дают возможность регулировать затяжку пружин и предохраняют пружины и сухари от выпадания из наконечников тяги. Чтобы пробки не могли самопроизвольно отвертываться, их шплинтуют. Ограничители 3 ограничивают предельное сжатие пружин сухарей при их регулировке. Наличие пружин в соединениях тяг способствует смягчению ударов, передающихся от колес автомобиля. Для защиты шаровых пальцев и сухарей от пыли и грязи места прохода шаровых пальцев в. наконечники тяг закрываются уплотнительными кольцами 10. Смазка к шаровым пальцам и сухарям подводится через масленки 6, установленные на наконечниках продольной рулевой тяги.

Рис. Рулевой привод (автомобиль ГАЗ-51А): 1 — рулевая сошка; 2 — шаровой палец; 3 — ограничитель пружин; 4 — пружина; 5 — наконечник продольной рулевой тяги; 6 и 19 — масленки; 7 — продольная рулевая тяга; 8 — сухари шарового пальца; 9 — пробка; 10 — уплотнительное кольцо; 11 — верхний рычаг поворотного кулака; 12 — гайка крепления рычага поворотного кулака; 13 — ограничитель поворота колес; 14 — поперечная рулевая тяга; 15 — наконечник поперечной рулевой тяги 16 — козырек уплотнительного кольца; 17 — стяжные болты; 18 — конический палец; 20 — пружина; 21 — шайба; 22 — пята конического пальца; 23 — вкладыш конического пальца; 24 — нижний рычаг поворотного кулака; 25 — поворотный кулак

Рычаги поворотных кулаков устанавливаются в отверстиях вилок кулаков на шпонках и крепятся гайками 12, которые затем шплинтуются. Рычаги поворотных кулаков автомобилей с ведущим передним мостом выполняются заодно с крышками подшипников шкворней. Соединение поперечной рулевой тяги с рулевыми рычагами выполнено также шарнирно. Наконечники крепятся на поперечной рулевой тяге при помощи резьбы (с одной стороны правая, с другой — левая) и стяжными болтами 17. Вращением этих наконечников можно изменять длину тяги и тем самым регулировать схождение передних колес.

Для соединения поперечной рулевой тяги с рычагами поворотных кулаков колес используются обычно саморегулирующиеся конические шарнирные соединения. Палец 18 поворотного рычага конической поверхностью прижимается к вкладышу 23 усилием пружины. 20. Вкладыш устанавливается в наконечник поперечной рулевой тяги и от повертывания стопорится винтом, входящим в паз вкладыша. Прижимная пружина верхним концом упирается в пяту 22 пальца, а нижним — в шайбу 21, закрепленную в наконечнике стопорным кольцом. По мере износа конических поверхностей пальца и вкладыша зазор между трущимися поверхностями выбирается перемещением пальца в осевом направлении под действием прижимной пружины.

На автомобилях повышенной проходимости шарнирное соединение поперечной рулевой тяги осуществляется с помощью пальцев и бронзовых втулок. Поперечная рулевая тяга таких автомобилей имеет вильчатые наконечники.

Правильным поворотом направляющих колес является только такой поворот автомобиля, при котором его колеса будут катиться по дороге без скольжения. А это возможно лишь в том случае, если направляющие колеса при повороте автомобиля будут поворачиваться на различные углы, причем внутреннее по отношению к центру поворота колесо должно поворачиваться на больший угол, чем наружное.

Одновременность поворота направляющих колес на необходимые углы обеспечивается рулевой трапецией, которую составляют передняя ось, рулевые рычаги и поперечная рулевая тяга. Правильные соотношения сторон и углов рулевой трапеции выбираются при конструировании автомобиля.

ustroistvo-avtomobilya.ru

Рулевое управление автомобиля — назначение и устройство

Назначение рулевого управления

Рулевое управление предназначено для изменения направления движения автомобиля. Обычно управляемыми являются колеса передней оси, но это преимущественно на легковых автомобилях. Иногда для улучшения управляемости автомобиля и сохранения над ним полного контроля его делают полноуправляемым, то есть управляемыми являются не только основные передние колеса – задние также имеют возможность отклоняться на определенный угол.

Рулевое управление может быть с усилителем или без него, может устанавливаться на поперечине кузова в моторном отсеке или на подрамнике (практически на всех современных автомобилях).

 Устройство рулевого управления

Пример рулевого механизма
Рисунок 8.1 Пример рулевого механизма.
1 – рулевое колесо; 2 – гайка крепления рулевого колеса; 3 – верхний кожух рулевой колонки; 4 – шестерня рулевого редуктора; 5 – фланец рулевого вала; 6 – рулевой вал; 7 – труба рулевого вала; 8 – нижний кожух рулевой колонки; 9 – шаровой шарнир; 10 – наконечник рулевой тяги; 11 – пыльник; 12 – рейка рулевого редуктора; 13 – болт крепления рулевой тяги; 14 – стопорная пластина; 15 – рулевая тяга; 16 – поворотный рычаг передней стойки.

 Рулевое колесо и рулевая колонка

Садясь в автомобиль на место водителя, первое, что вы видите, — это рулевое колесо. Вращая его в ту или иную сторону, вы направляете автомобиль. Ничего в рулевом колесе (или руле) сложного нет… если это, конечно, руль автомобиля самой простой комплектации. В современных автомобилях руль — это и место для установки подушки безопасности, и пульт управления аудиосистемой вместе с телефоном, также это контроллер для управления бортовым компьютером. Рулевое колесо современного автомобиля иногда бывает попросту перегружено всяческими переключателями и кнопками, которые имеют различное назначение.

Рулевая колонка, это, по сути, два вала (реже один), соединенных между собой универсальными шарнирами (похожими на карданные). Она призвана передавать вращение от рулевого колеса к рулевому механизму. На многих нынешних автомобилях предусмотрена регулировка угла наклона рулевого колеса и расстояния его вылета. Другими словами, вы можете, перемещая рулевое колесо вверх/вниз и на себя/от себя, установить то положение, которое наиболее близко к идеальному, согласно вашим пожеланиям.

Примечание
Для обеспечения высоких показателей пассивной безопасности, к проектированию рулевой колонки относятся так же серьезно, как и, например, к проектированию сиденья. Это связано с тем, что при фронтальном столкновении рулевое колесо не должно смещаться более, чем это допустимо. Поэтому при столкновении рулевая колонка должна складываться или ломаться в определенных местах.

 Рулевой механизм

На современных легковых автомобилях применяются два самых распространенных типа рулевых механизмов: червячный и реечный.

Интересно
Огромное значение имеет место расположения на подрамнике рулевого механизма относительно воображаемой оси управляемых колес. Так, установка рулевого механизма за передней осью или перед ней в итоге может кардинально изменить поведение автомобиля на дороге, поэтому конструкторы при проектировании автомобиля подходят к этому вопросу очень серьезно.

 Червячный рулевой механизм

Если рулевой механизм червячный, то он состоит из глобоидного червяка и углового сектора, на который установлен ролик. К угловому сектору подсоединен вал, а на валу закреплена сошка. Перемещение сошки передается на рулевую трапецию, которая состоит из рулевых тяг. Тяги, перемещаясь, поворачивают колеса в ту или иную сторону. Устройство рулевого механизма показано на рисунке 8.2. Сейчас автомобили с червячным рулевым механизмом встречаются все реже.

Червячный рулевой механизм
Рисунок 8.2 Червячный рулевой механизм.

Червячная передача – это такой тип передачи, в которой имеется червяк, представляющий собой резьбовую часть болта, но только с увеличенными во много раз витками, и шестерня, входящая в зацепление с этим червяком.

Глобоидным червяк называется из-за своей формы: его профиль вогнутый, как показано на рисунке 8.3.

Внешний вид глобоидного червяка
Рисунок 8.3 Внешний вид глобоидного червяка.

 Реечный рулевой механизм

Теперь опишем реечный рулевой механизм (рисунок 8.4). Он состоит из шестерни и зубчатой рейки. Шестерня соединена с валом рулевой колонки, а рейка через тяги – с поворотными кулаками колес.

Реечный рулевой механизм
Рисунок 8.4 Реечный рулевой механизм.

Интересно
Иногда зубья на рейке наносят с переменным шагом (рисунок 8.5). Делают это для того, чтобы получить подобие активного рулевого управления для получения сочетания таких противоречивых показателей, как управляемость и комфорт. Так, для того чтобы при парковке водитель не вращал рулевое колесо на 5—10 оборотов в угоду легкости, желательно, чтобы число оборотов от упора до упора составляло как можно меньше – один, а то и пол-оборота. Но если от правого крайнего положения руля до левого будет всего один оборот, то рулевое управление будет довольно чувствительным к каждому движению, что опасно при движении на высоких скоростях, так как плавно выполнить все маневры не удастся, а это чревато последствиями. Вот и пришли к такому довольно простому компромиссному решению: шаг центральных зубьев рулевой рейки небольшой, а передаточное отношение чуть выше, а, следовательно, и чувствительность к отклонению рулевого колеса небольшая. Но от центра шаг зубьев увеличивается, чтобы уменьшить передаточное отношение и общее число оборотов рулевого колеса.

Пример зубчатой рейки рулевого механизма с переменным шагом зубьев
Рисунок 8.5 Пример зубчатой рейки рулевого механизма с переменным шагом зубьев.

Примечание
Шаг зубьев – это расстояние между центрами вершин зубьев.

Интересно
Кстати, может быть и обратная ситуация, когда шаг зубьев рейки уменьшается ближе к концам рейки.

Реечный рулевой механизм занял место червячного и основательно закрепился как наиболее актуальная конструкция, так как его преимущества говорят сами за себя: управление автомобилем, даже не оборудованным усилителем рулевого управления, несложное, небольшое количество звеньев всего рулевого механизма, простота монтажа на автомобиль и сведение к минимуму операций по обслуживанию.

 Рулевой привод

Рулевой привод — это набор тяг и шарниров, связывающих и передающих перемещения от рулевого механизма к поворотным кулакам управляемых колес.

Если вернуться к червячному рулевому механизму, то в классической схеме имеются три тяги — одна центральная и две боковые, они соединяются через шарниры. Тяги рулевого привода в данном случае называют рулевой трапецией. Конструкция рулевой трапеции в геометрическом плане такова, что она обеспечивает поворот управляемых колес на разные углы (смотрите главу «Ходовая часть»).

При условии установки реечного рулевого механизма все немного проще. К рулевой рейке крепятся рулевые тяги с обеих сторон, которые передают перемещение на поворотные кулаки колес. Преимущества очевидны, ведь чем меньше различных промежуточных звеньев, тем надежнее и точнее весь механизм.

Примечание
Чтобы исключить попадание грязи и пыли в корпус реечного рулевого механизма, с обеих его сторон установлены так называемые пыльники (гофрированные резиновые чехлы).

 Углы поворота управляемых колес

При повороте управляемые колеса автомобиля проходят различные расстояния. И если оба колеса будут поворачиваться на одинаковый угол, автомобиль будет смещаться с заданной траектории, при этом шины колес будут значительно быстрее изнашиваться.

Поворот управляемых колес на разные углы
Рисунок 8.6 Поворот управляемых колес на разные углы.

Для того чтобы избежать этого, рулевое управление проектируют таким образом, чтобы обеспечить поворот внутреннего колеса на больший угол относительно наружного.

Поворот управляемых колес на различные углы
Рисунок 8.7 Поворот управляемых колес на различные углы.

monolith.in.ua

Механизмы рулевого устройства, рулевые приводы, рулевые машины

Назначение и требования к рулевым устройствам

Рулевое устройство предназначено для изменения поворота судна и удержания его на курсе путем поворота руля на определенный угол или удержания его в диаметральной плоскости судна.

В состав рулевого устройства входят четыре основных узла:

  1. руль — для восприятия давления воды и поворота судна;
  2. рулевой привод — для связи с рулевой машиной и передачи вращающего момента на баллер;
  3. рулевая машина (двигатель)—для обеспечения работы рулевого привода;
  4. телединамическая передача (телемотор) —для связи рулевой машины с постами управления судном.

Все суда морского флота оборудуются основной механической и запасной ручной или механической рулевой машиной. По требованию Регистра мощность основной рулевой машины и привода должна быть достаточной для перекладки руля с, борта на борт (2X35°) за время не более 30 сек на полном переднем ходу судна. Ручной привод должен перекладывать руль за время не более 100 сек при этих же условиях. Мощность запасного механического привода должна быть достаточной для перекладки руля с 20° одного до 20° другого борта за время не более 60 сек при скорости переднего хода, равной половине полной, но не менее 6 узлов. Переход с основного привода на запасной не должен занимать более двух минут.

Рулевое устройство должно быть экономичным, надежным и безопасным в работе независимо от навигационных условий, в которые может попасть судно. На судне должно быть предусмотрено не менее двух разных постов управления рулевых устройств.

Рули

По конструктивному исполнению рули подразделяются на простые, полубалансирные, балансирные, обтекаемые и т. д., а по принципу действия — на пассивные и активные.

Пассивным называется руль, который воспринимает и передает только силу давления воды на перо. Активный руль, помимо этой силы, передает еще и силу упора собственного движителя, размещаемого в грушевидной насадке пера руля. Привод движителя монтируется совместно с ним или выносится в судовое помещение.

Активный руль повышает маневренность судна, позволяя перекладывать руль до 70—90° на борт, и может давать приращение скорости судна на 1,5 узла, имея мощность привода движителя от 8 до 11% от мощности главных двигателей.

Схема активного руля приведена на рис. 67. Гребной винт руля соединен с валом электродвигателя эластично. Питание к электродвигателю подводится по кабелю, проходящему через гельмпортовую трубу вдоль баллера. Двигатель охлаждается водой и внутренние поверхности его покрыты антикоррозионным лаком, являющимся одновременно и электроизоляцией. Управляется активный руль непосредственно с мостика.

Рулевые приводы

По конструктивному исполнению и принципу действия рулевые приводы подразделяются на:

  • румпельные и секторные со штуртросной передачей;
  • винтовые механические;
  • ледокольного типа;
  • секторные с зубчатой передачей;
  • гидравлические;

Первый тип привода применяется при значительном удалении рулевой машины от руля и в настоящее время встречается лишь на малых судах.

Винтовые механические приводы применяются исключительно редко, да и то в качестве запасных.

Ледокольный привод представляет собой мощный румпель с расположенной на нем паровой рулевой машиной.

Этот привод применялся на паровых ледоколах старой постройки.

Некоторое распространение имеет секторный зубчатый привод на судах.

Одна из конструкций привода показана на рис. 68. Сектор насажен на баллер свобод¬но и находится в зацеплении с зубчатой шестерней, приводимой во вращение от вала рулевой машины. Посредством амортизационных пружин сектор соединяется с румпелем, плотно насаженным на баллер на шпонке.

Амортизационные пружины предназначены для передачи движения на румпель и для гашения динамических нагрузок руля, могущих привести к поломкам зубьев сектора и шестерни.

Современные недавно построенные и вновь строящиеся суда оборудуются в подавляющем большинстве гидравлическими рулевыми приводами, которые подразделяются на плунжерные (скальчатые), винтовые, плунжерные секторно-кольцевые и лопастные.

Плунжерные (скальчатые) приводы изготовляются двух- и четырех-скальчатыми. Двух- скальчатый рулевой гидропривод приведен на рис. 69. Цилиндровые скалки соединены между собой скользящей муфтой или подшипником румпеля.

Румпель скользит в подшипнике и одновременно, испытывая давление со стороны скалок, поворачивается. Направление движения скалок зависит от направления подачи рабочего масла в цилиндры привода. Цилиндры соединяются между собой трубопроводами с перепускными клапанами, которые срабатывают при резком возрастании нагрузки в одном из цилиндров.

Винтовой гидравлический привод приведен на рис. 70, а. Корпус и цилиндр привода жестко закреплены на фундаменте. К корпусу крепится верхняя крышка, изготовленная заодно с резьбовой втулкой, внутри которой проходит свободно баллер.

На баллере в нижней части сидит неподвижно на шпонке стакан с внешними шлицами. Шлицами соединяется со стаканом кольцевой поршень, имеющий также резьбовое зацепление с верхней крышкой привода. Соответствующие места уплотнены внутри привода кольцами из маслостойкой резины.

При подаче рабочего масла в верхнюю полость 8 поршень будет опускаться вниз и одновременно поворачиваться в резьбе крышки. Вращение передается баллеру и руль поворачивается. Из нижней полости масло отводится к насосу. Для обратного поворота руля рабочее масло подается в нижнюю полость и отводится из верхней полости привода. Поршень будет двигаться вверх, а руль — поворачиваться в противоположном направлении.

На квадратную головку баллера может надеваться румпель запасного привода. Конструкция винтового гидравлического привода компактна, но сложна, и сам привод имеет сравнительно низкий механический к.п.д.

Плунжерный секторно-кольцевой гидравлический рулевой привод показан на рис. 70, б. Этот привод получил некоторое распространение на современных морских судах иностранного флота.

Кольцевой цилиндр привода разделен перемычкой на две рабочие полости, в которых помещены пустотелые плунжеры, перемещающиеся по кольцевым рабочим полостям цилиндра. Разделительная перемычка имеет два отверстия, через которые производится подвод и отвод рабочего масла из полостей цилиндра. Рабочее масло давит на торец плунжера и заставляет его перемещаться. Торец плунжера оборудован уплотнением из маслостойкой резины для предотвращения протечек масла из полости цилиндра наружу.

Румпель насажен на баллере на штоке и входит своим приводным концом в специальную втулочную перемычку плунжеров. Секторно-кольцевой привод прост по устройству, но имеет серьезный эксплуатационный недостаток — трудность обеспечения внутреннего уплотнения.

Очень большое распространение в настоящее время получил лопастной гидравлический рулевой привод. Основными узлами его являются цилиндр с крышкой и ротор. Ротор представляет собой ступицу с закрепленными на ней или изготовленными совместно рабочими лопастями и насаживается на конический конец баллера или промежуточный вал на шпонке. Встречаются цельнолитые конструкции ротора, присоединяемого к баллеру фланцевым соединением. Изготовляются лопастные рулевые приводы и в нашей стране и за рубежом.

Рулевые машины

В некоторых литературных источниках и в производственной практике понятие о рулевой машине, часто отождествляют с понятием всего рулевого устройства или рулевого привода. Это неправильно, так как рулевая машина — лишь составная часть рулевого устройства.

На судах морского флота применяются паровые, электрические, гидравлические и ручные рулевые машины. Ручная машина и ручной привод играют только вспомогательную роль. Мощность рулевых машин составляет от 0,60 до 0,65% от мощности главного двигателя в 3000 л. с. и 0,18—0,19% при мощности главного двигателя 60 000 л. с.

Замена парусного флота паровым привела к быстрому росту скорости и водоизмещения судов. Условия ручного штурвального управления рулем затруднились и возникла необходимость применения механических рулевых машин. Основной энергией на паровых судах была энергия пара и поэтому прежде всего стали применяться паровые рулевые машины.

Рулевое устройство судна оборудуется одной паровой маши¬ной. Машина двухцилиндровая в вертикальном или горизонтальном исполнении. Через цилиндрическую зубчатую или червячную передачу рулевая машина передает мощность зубчатому сектору или грузовому барабану при штуртросном рулевом приводе.

Рулевая машина должна сразу же пускаться из любого положения, и реверс должен осуществляться без задержки. Поэтому машина работает без расширения пара и мотыли расположены под углом 90° друг к другу. Паровые золотники машины не имеют перекрышей, каждый цилиндр снабжен своим золотником и устанавливается третий пусковой золотник. Схема парораспределения рулевой паровой машины приведена на рис. 71. На двух частях рисунка пусковой золотник показан в своих крайних положениях. Движение пара и поршней машины показано стрелками. При среднем положении пускового золотника доступ пара к цилиндрам прекращается и машина останавливается. Скорость вращения вала рулевой машины и перекладки руля при работе рулевого устройства зависит от величины открытия паровых окон пусковым золотником, т. е. от количества подаваемого в цилиндры пара.

Цилиндровые золотники приводятся в движение от вала рулевой машины, а пусковой золотник — с мостика. Пусковой золотник связан с валом рулевой машины сервомотором, т. е. устройством для согласования действий штурвала и рулевой машины, которое служит для возврата пускового золотника в среднее положение после прекращения воздействий с мостика или другого поста управления.

Паровые рулевые машины оборудуются клапанами экономии, устанавливаемыми между пусковым золотником и стопорным паровым клапаном. Назначение клапана экономии — прекратить доступ пара к пусковому золотнику несколько раньше, чем он придет в среднее положение. В среднее положение золотник возвращается сервомотором, но не сразу, а в течение некоторого времени. Доступ пара в цилиндры машины постепенно прекращается и вращение ее замедляется. Наконец, наступает такой момент, когда паровая машина не может преодолеть силы сопротивления в рулевом устройстве из-за малого количества поступающего в нее пара и останавливается раньше, чем пусковой золотник станет в среднее положение. Паровые окна не будут закрыты полностью и через них свежий пар будет постоянно перетекать в магистраль отработавшего пара. Для предотвращения этих бесполезных утечек свежего пара устанавливается клапан экономии. Клапан может приводиться в действие автоматически от давления пара или механически от общего привода с пусковым золотником.

Электрическая рулевая машина представляет собой обычный электродвигатель постоянного или переменного тока, на валу которого закрепляется червяк, работающий в паре с червячным колесом. На одном валу с червячным колесом укрепляется прямозубая шестерня, входящая в зацепление с зубчатым сектором рулевого привода.

Во многих случаях рулевое устройство оборудуется двумя электродвигателями: рабочим и резервным. Установка их выполняется с учетом возможности осевого перемещения и вывода из зацепления с червячным колесом при переходе с одного электродвигателя на другой или на запасной привод. Для предотвращения чрезмерного поворота зубчатого сектора устанавливаются конечные выключатели, прерывающие питание электродвигателя током.

Электрогидравлическая рулевая машина представляет собой электроприводной насос, перемещающий рабочее масло в системе гидропривода. Применяются ротационные насосы (поршневые, винтовые, пластинчатые) и шестеренные с переменной и постоянной производительностью. Устанавливаются также две рулевые машины—рабочая и резервная.

Ротационный радиально-поршневой насос рулевой машины приведен на рис. 72.

Насос состоит из корпуса, регулировочного кольца и ротора. Основу ротора составляет звезда цилиндров, вращающаяся вместе с поршнями. Поршни имеют башмаки, а в некоторых конструкциях ролики, которые скользят по внутренней поверхности регулировочного кольца. Регулировочное кольцо выполняет роль пускового золотника, связано своими цапфами с телемотором и сервомотором и имеет возможность поперечного перемещения. Центральная полость звезды цилиндров разделена на две части неподвижной горизонтальной перегородкой. Каждая часть полости сообщается через отверстия с трубопроводами рулевого привода.

Средний рисунок насоса показывает нахождение регулировочного кольца в нейтральном или среднем положении. При вращении ротора поршни не имеют возвратно-поступательного движения и насос не производит перемещение рабочего масла. Этот момент соответствует удержанию руля в заданном положении.

Крайние рисунки показывают расположение регулировочного кольца в своих крайних положениях, что соответствует максимальной производительности насоса и максимальной скорости перекладки руля. При вращении ротора в направлении, указанном стрелкой, отвод регулировочного кольца вправо обеспечивает всасывание масла в центральную полость насоса через верхнее отверстие, а нагнетание — через нижнее. С отводом кольца влево всасывание будет производиться через нижнее отверстие, а нагнетание — через верхнее. Таким образом изменяется направление движения масла в трубопроводах и направление поворота привода и перекладки руля.

Ротор насоса вращается с постоянным числом оборотов. Напор насоса постоянный, а производительность переменная и зависит от степени отвода регулировочного кольца от среднего положения. Такой насос называется насосом с регулируемой производительностью.

Отечественное рулевое устройство РЭГ-ОВИМУ-7 с лопастным рулевым приводом, разработанное под руководством В. В. Завиша, приведено на рис. 73.

Рулевой привод двухлопастной и состоит из цилиндра и ротора. Ротор цельнолитой и имеет фланец, при помощи которого присоединяется к баллеру. Рулевая машина электрогидравлическая, насос ротационный пластинчатый марки Г-12-14 (ЛЗФ-70) постоянной производительности 73 л/мин при 1000 об/мин и мощности 5,6 квт. Рабочая жидкость — турбинное масло 22. Допускается применение и другого, более вязкого, масла. Давление масла в системе 35 кГ/см2.

На рисунке руль стоит в заданном положении, насос разгружен и работает вхолостую, перемещая масло в направлении, указанном сплошными стрелками через отверстия г, е и б.

Для перекладки руля на правый борт каретка приемника телемотора отводится вправо воздействием на нее давления жидкости, перемещаемой в системе телемотора вращением рулевого штурвала. Золотники распределительного устройства переместятся вправо и отверстия д и в откроются, а отверстие е закроется. Масло будет перемещаться в системе в направлении, указанном пунктирными стрелками, и поступать в цилиндр привода через отверстия г и в. Ротор привода и руль будут поворачиваться против часовой стрелки.

Чтобы удержать руль в нужном положении, рулевой перестает вращать штурвальное колесо и сервомотор возвращает золотники распределительного устройства в среднее положение. Насос начинает работать опять вхолостую.

Для перекладки руля на левый борт рулевой вращает штурвальное колесо в обратном направлении. Каретка телемотора отводится влево и в этом же направлении переместится распределительный золотник (нижний), а разгрузочный золотник опять передвинется вправо. Масло теперь будет идти к приводу через отверстия г и д, а от привода — через в и б. Ротор привода и руль будут поворачиваться по часовой стрелке.

Распределительный и разгрузочный золотники связаны с ротором привода системой рычагов, представляющих собой сервомотор. Ротор всегда оказывает на золотники действие, обратное действию телемотора. Поэтому с прекращением вращения штурвального колеса действие телемотора прекращается и ротор рулевого привода своим движением приведет золотники в среднее положение через систему сервомотора.

Чтобы показания аксиометра совпадали с действительным положением руля, предусмотрен возврат разгрузочного золотника в среднее положение лишь после того, как распределительный золотник станет в среднее положение. Для этого к разгрузочному золотнику придан фиксатор в верхней части. При отводе золотника из среднего положения поршень фиксатора опускается вниз под действием давления пружины и застопоривает разгрузочный золотник. Когда распределительный золотник станет в среднее положение и закроет окна див, перераспределением гидравлического давления на поршень фиксатора последний поднимется вверх и даст возможность пружине разгрузочного золотника вернуть его в среднее положение.

В системе рулевого устройства предусмотрены предохранительный клапан для перепуска масла в случае заклинивания разгрузочного золотника в правом положении и перепускные клапаны для сброса масла из одной полости привода в другую при сильных ударах волн о перо руля.

Сервомоторы и телемоторы

Сервомотор — обязательный элемент каждой рулевой машины. Принцип действия всех сервомоторов одинаков, а конструктивное исполнение разное и зависит от типа рулевой машины и рулевого привода.

Одна из конструкций сервомотора паровой рулевой машины приведена на рис. 74.

Рабочий вал лежит в подшипниках и имеет опорные диски, препятствующие осевому перемещению вала. Рулевой штурвал выполнен совместно со ступицей, имеющей резьбовую нарезку. Ступица навинчена на вал и имеет кольцевой паз, куда входят выступы углового вильчатого рычага. Рычаг связан со штоком пускового золотника.

Для перекладки руля рулевой вращает штурвал, который навинчивается или вывинчивается с вала и перемещается по оси. Перемещение ступицы штурвала приводит к повороту углового рычага, который выводит пусковой золотник из среднего положения, и рулевая машина начинает работать. Через шестеренную передачу вращение вала рулевой машины передается рабочему валу, который оказывает на ступицу штурвального колеса действие, обратное действию рулевого, и будет стремиться вернуть штурвальное колесо и пусковой золотник в среднее положение.

Если скорость вращения штурвального колеса будет равна скорости вращения рабочего вала, пусковой золотник будет находиться в заданном положении и рулевая машина будет работать с постоянной скоростью. Для увеличения скорости вращения рулевой машины и перекладки руля рулевой должен вращать штурвальное колесо с возрастающей скоростью.

После перекладки руля на за¬данный угол рулевой отпускает штурвальное колесо. Рулевая машина еще будет работать некоторый малый промежуток времени, рабочий вал вернет штурвальное колесо и пусковой золотник в среднее положение, и машина остановится.

У гидравлических рулевых машин роль сервомотора выполняют рычажные передачи.

Почти на всех морских судах рулевая машина удалена от поста управления ею и, поэтому применяются специальные телединамические передачи или телемоторы для связи поста управления с пусковым устройством рулевой машины.

Существуют валиковый, стержневой, тросовый, электрический и гидравлический телемоторы. Последние два имеют преимущественное применение.

Гидравлический телемотор приведен на рис. 75. Основу телемотора составляют датчик (рулевая тумба) и приемник. Датчик устанавливается на мостике, а приемник — в румпельном отделении и соединяются между собой трубопроводами. Предварительное заполнение системы телемотора маслом производится при помощи ручного насоса. Воздух при заполнении системы отводится через воздушную пробку крышки цилиндра датчика, а заполнение контролируется по переливу масла в бачок через сливной трубопровод.

Внутри датчика находится зубчатая рейка с закрепленным на ней поршнем. Рейка приводится в движение от рулевого штурвала через зубчатую цилиндрическую передачу. К цилиндру датчика прикреплен резервуар, связанный с рабочей полостью датчика при посредстве двух клапанов. Один клапан служит для перепуска масла из цилиндра датчика в резервуар в случае чрезмерного повышения давления в системе, другой — для перепуска масла из резервуара в цилиндр датчика при значительном понижении давления в системе.

Приемник состоит из двух неподвижных пустотелых скалок и подвижного цилиндра, разделенного перегородкой на две части. К цапфам цилиндра присоединены две тяги, связанные со штоком пускового золотника рулевой машины.

При вращении штурвала против часовой стрелки зубчатая рейка и поршень датчика будут двигаться вверх. Масло будет выдавливаться из верхней полости цилиндра датчика и поступать в нижнюю полость цилиндра приемника. Цилиндр будет двигаться вверх, сжимая пружину и выталкивая масло из верхней полости в нижнюю полость цилиндра датчика. Тяги выведут золотник из среднего положения, и рулевая машина начнет работать.

Если рулевой перестанет вращать штурвал и отпустит его, пружина начнет расширяться и заставит цилиндр приемника опускаться вниз. Ход масла в системе будет обратный, и цилиндр приемника и зубчатая рейка с поршнем датчика будут возвращены в среднее положение. Сервомотор остановит рулевую машину.

Вращением штурвала по часовой стрелке обеспечится перекладка руля на другой борт.

Для управления рулевой машиной широко применяются авторулевые, заменяющие рулевого и повышающие экономичность рулевого устройства за счет более точного управления рулевой машиной и уменьшения расхода энергии. Вдобавок, судно идет более устойчиво, меньше рыскает, что снижает расход топлива главным двигателем и сокращает время перехода судна.

Обслуживание рулевых устройств

При обслуживании рулевых устройств необходимо руководствоваться общими указаниями по обслуживанию палубных механизмов, а также указаниями ССХ и заводов-изготовителей.

Рулевое устройство должно быть в полной готовности к моменту выхода судна в рейс. Приготовление рулевой машины к действию производится по указанию вахтенного помощника капитана.

В процессе приготовления к действию паровой рулевой ма¬шины производится ее внешний осмотр, прогревается паропровод и машина, проверяется действие пускового золотника, серво¬мотора и клапана экономии. Все необходимые части смазы¬ваются. Телемотор заполняется рабочей жидкостью, если необхо¬димо, и проверяется плотность гидравлической системы по удер¬жанию давления масла.

У секторного или механического винтового привода обращается особое внимание на состояние шестерен, червяков и червячных колес. При сломанных или треснутых зубьях работа рулевого привода запрещается.

В электрогидравлической рулевой машине проверяется уровень масла в расширительном бачке, действие и переход с одного насоса на другой и с основного привода на запасной и обратно, плотность соединений и отсутствие пропусков рабочего масла из системы.

Действие рулевого устройства проверяется пробными пусками с контролированием согласованности действия всех узлов. Замеченные ненормальности в работе устраняются.

Вахтенный моторист или машинист обязан не менее двух раз за вахту проверять работу рулевой машины и смазывать трущиеся части на ходу судна. При этом также проверяется нагрев трущихся деталей на ощупь или по показаниям термометров и наличие шумов и стуков в рабочих частях рулевого устройства.

В гидравлических системах проверяется уровень масла в бачках, не допускается снижение уровня ниже метки на указательной шкале или колонке. При длительной работе рулевого устройства необходимо работать поочередно рулевыми машинами, если их две.

О всех замеченных ненормальностях в работе рулевого устройства необходимо немедленно докладывать вахтенному механику. В случае нагрева трущихся частей машины выше нормы выделяется самостоятельный вахтенный для наблюдения за рулевым устройством.

При кратковременной остановке рулевой машины закрывается стопорный клапан свежего пара и открываются краны продувания паровых цилиндров. При остановке машины на длительное время все паровые клапаны, за исключением кранов продувания, закрываются. Руль должен быть установленным в среднее положение.

Вывод электрической и электрогидравлической рулевой машины из действия производится отключением питания электродвигателя. Гидравлическая система должна быть проверена на плотность и на отсутствие течи рабочей жидкости из системы.

mirmarine.net

Рулевой привод | Рулевое управление

Рулевой привод ⭐ — это устройство предназначенное для передачи от рулевого механизма усилия, необходимого для поворота управляемых колес обоих бортов автомобиля.

Рулевой привод обеспечивает поворот колес на разные углы и тем самым — их качение без проскальзывания по концентрическим окружностям с общим центром, являющимся центром поворота автомобиля.

Движение автомобиля не сопровождается боковым скольжением его колес, если траектории качения всех колес имеют единый центр поворота.

Рулевой привод автомобиля состоит из рулевых рычагов и рулевых тяг, образующих рулевую трапецию, которая и обеспечивает одновременный поворот управляемых колес на неодинаковые углы.

Правильное соотношение углов поворота управляемых колес устанавливается при повороте автомобиля за счет разных длин рычагов, входящих в рулевую трапецию.

Различают цельную (единую) трапецию, применяемую при наличии зависимой подвески управляемых колес, и расчлененную, используемую в сочетании независимой подвеской. В первом случае левое и правое управляемые колеса 3 связаны жесткой балкой 7 управляемого моста. Сошка 11 шарнирно соединена с продольной тягой 10, жестко связанной с левым поворотным кулаком, рычаг 9 которого, в свою очередь, шарнирно соединен с поперечной тягой 8. Во втором случае сошка 5 шарнирно связана с левым концом средней поперечной тяги б. Правый конец тяги также шарнирно соединен с маятниковым рычагом 7, имеющим опору на раме (кузове) автомобиля и в точности имитирующим перемещение сошки в процессе поворота. Тяга 6 шарнирно связана с боковыми тягами 4, соединенными посредством поворотных рычагов 1 трапеции с поворотными кулаками, на оси которых установлены управляемые колеса.

Рулевой привод с цельной трапецией

Рис. Рулевой привод с цельной трапецией:
1 — рулевая колонка; 2 — рулевой вал; 3 — управляемые колеса; 4,9 — рычаги левого поворотного кулака; 5 — правый поворотный кулак; 6 — рычаг правого поворотного кулака; 7 — балка управляемого моста; 8 — поперечная рулевая тяга; 10 — продольная тяга; 11 — сошка; 12 — червячный механизм; 13 — рулевое колесо; стрелками показано направление движения элементов рулевого управления

Расчлененная трапеция

Рис. Расчлененная трапеция:
1 — поворотные рычага; 2 — наконечник; 3 — регулировочные втулки; 4 — боковые тяги; 5 — сошка; 6 — средняя поперечная тяга; 7 — маятниковый рычаг; 8 — стяжные болты; 9 — хомутик втулки; 10 — шаровой палец; 11 — вкладыш; 12 — пресс-масленка; 13 — заглушка; 14 — пружина; 15 — опорная пята; 16 — уплотнитель

В процессе эксплуатации автомобиля на детали рулевой трапеции (сошка, тяги) действуют значительные нагрузки, вызывающие износ этих деталей. Поэтому шарнирные соединения деталей трапеции обычно выполняют шаровыми и саморегулирующимися. Саморегулирование заключается в автоматическом устранении зазоров, возникающих по мере изнашивания деталей. Излишние зазоры в приводе вызывают увеличение свободного хода рулевого колеса.

Шаровой наконечник сошки зажат между двумя полусферическими вкладышами и регулировочной пробкой для устранения зазора в соединении по мере изнашивания деталей.

Шаровые пальцы защищены от попадания грязи специальным резиновым уплотнителем 16. Поверхность вкладыша (сухарей) 11 прижимается к шаровой поверхности пальца пружиной 14. При сборке шарнира поджатие пружины к опорной пяте 15 обеспечивается установкой заглушки 13. В некоторых случаях применяют винтовые пробки, которые после регулирования зазоров в шарнире шплинтуются в наконечнике. Трущиеся поверхности шарниров обычно смазываются консистентной смазкой с помощью специальных пресс-масленок 12.

ustroistvo-avtomobilya.ru

Вам может понравится

Отправить ответ

avatar
  Подписаться  
Уведомление о