Передаточное отношение. передаточное отношение зубчатой передачи

Типы главной передачи по виду зубчатого соединения

Если разделить типы главных передач, тогда можно выделить:

  • цилиндрическую;
  • коническую;
  • червячную;
  • гипоидную;

Цилиндрическая главная передача применяется на легковых переднеприводных автомобилях с поперечным расположением двигателя и коробки передач. Ее передаточное число находится в пределах 3,5-4,2.

Шестерни цилиндрической главной передачи могут быть прямозубыми, косозубыми и шевронными. Цилиндрическая передача имеет высокий КПД (не менее 0.98) но она уменьшает дорожный просвет и довольно шумная.

Коническая главная передача применяется на заднеприводных автомобилях малой и средней грузоподъемности с продольным расположением ДВС, где габаритные размеры не имеют значения.

Оси шестерней и колеса такой передачи пересекаются. В этих передачах применяют прямые, косые или криволинейные (спиральные) зубья. Снижение шума достигается применением косого или спирального зуба. КПД главной передачи со спиральным зубом достигает 0.97-0.98.

Червячная главная передача может быть как с нижним, так и с верхним расположением червяка. Передаточное число такой главной передачи находится в пределах от 4 до 5.

По сравнению с другими типами передач, червячная передача компактнее и менее шумная, но имеет низкий КПД 0.9 — 0.92. В настоящее время применяется редко по причине трудоемкости изготовления и дороговизны материалов.

Гипоидная главная передача представляет собой один из популярных видов зубчатого соединения. Эта передача своего рода компромисс между конической и червячной главной передачей.

Передача применяется на заднеприводных легковых и грузовых автомобилях. Оси шестерней и колеса гипоидной передачи не пересекаются, а скрещиваются. Сама передача может быть как с нижним, так и с верхним смещением.

Главная передача с нижним смещением позволяет расположить ниже карданную передачу. Следовательно, смещается и центр тяжести автомобиля, повысив его устойчивость при движении.

Гипоидная передача по сравнению с конической имеет большую плавность, бесшумность, меньшие габариты. Ее применяют на легковых автомобилях с передаточным числом от 3,5-4,5, и на грузовых вместо двойной главной передачи с передаточным числом от 5-7 . При этом КПД гипоидной передачи составляет 0.96-0.97.

При всех своих плюсах гипоидная передача имеет один недостаток – порог заклинивания при обратном ходе автомобиля (превышение расчетных оборотов)

По этой причине водителю необходимо проявлять особую осторожность при выборе скорости движения задним ходом

Назначение, конструктивные особенности

Основная задача этого элемента сводится к изменению крутящего момента перед подачей его на привод колес. То же делает и коробка передач, но у неё существует возможность изменения передаточных чисел за счет ввода в зацепление тех или иных шестерен. Несмотря на наличие в конструкции автомобиля КПП, на выходе из нее крутящий момент небольшой, а скорость вращения выходного вала – высокая. Если передать вращение напрямую на ведущие колеса, то возникшая нагрузка «задавит» двигатель. В общем, авто просто не сможет сдвинуться с места.

Главная передача автомобиля обеспечивает повышение крутящего момента и снижение скорости вращения. Но в отличие от КПП передаточное число у нее фиксированное.

Расположение главной передачи на примере обычной МКПП

Представляет собой эта передача на легковом авто обычный шестеренчатый одноступенчатый редуктор постоянного зацепления, состоящий из двух шестерен разного диаметра. Ведущая шестерня небольшая по размерам и связана она с выходным валом КПП, то есть вращение подается на нее. Ведомая же шестерня значительно больше по размерам и получаемое вращение она подает на приводные валы колес.

Передаточное число является соотношением количества зубьев шестерен редуктора. Для легковых авто этот параметр находится в диапазоне 3,5-4,5, а для грузовиков он достигает 5-7.

Чем больше передаточное число (больше количество зубьев ведомой шестерни относительно ведущей), тем выше крутящий момент, подаваемый на колеса. При этом тяговое усилие будет больше, но максимальная скорость ниже.

Передаточное число главное передачи подбирается исходя из эксплуатационных показателей силовой установки, а также других узлов трансмиссии.

Устройство главной передачи напрямую зависит от конструктивных особенностей самого автомобиля. Этот редуктор может быть, как отдельным узлом, установленным в своем картере (заднеприводные модели), так и входить в конструкцию КПП (авто с передним приводом).

Главная передача в заднеприводном автомобиле

Что касается некоторых полноприводных авто, то у них может использоваться разная компоновка. Если в таком автомобиле расположение силовой установки – поперечное, то главная передача передней оси входит в конструкцию КПП, а задней располагается в отдельном картере. У автомобиля с продольной компоновкой главные передачи на обоих осях отделены от КПП и раздаточной коробки.

В моделях с отделенной главной передачей, этот редуктор выполняет еще одну задачу – изменяет угол направления вращения на 90 град. То есть выходной вал КПП и приводные валы колес имеют перпендикулярное расположение.

Расположение главной передачи передней оси Audi

В переднеприводных моделях, где главная передача входит в конструкцию КПП, указанные валы имеют параллельное расположение, поскольку менять угол направления не нужно.

В ряде грузовых авто применяются двухступенчатые редукторы. Примечательно, что их конструкция может быть разной, но наибольшее распространение получила так называемая разнесенная компоновка, в которой используется один центральный редуктор и два колесных (бортовых). Такая конструкция позволяет существенно повысить крутящий момент, а соответственно и тяговое усилие на колесах.

Привод легковых автомобилей

Особенность работы редуктора сводится к тому, что он равномерно разделяет вращение на оба приводных вала. При прямолинейном движении такое условие является нормальным. Но при прохождении поворотов колеса одной оси проходят разное расстояние, поэтому необходимо изменение скорости вращения каждого из них. Это входит в задачу дифференциала, используемого в конструкции трансмиссии (он устанавливается на ведомой шестерне). В результате главная передача подает вращение на приводные валы не напрямую, а через дифференциал.

Динамический расчет автомобиля

В процессе
динамического расчета выполняют
построение динамической характеристики
автомобиля.

Динамический
фактор D
предложен Е.А.
Чудаковым. Используют его для сравнительной
оценки динамических качеств различных
автомобилей в различных условиях их
движения (качество дороги, нагрузка
автомобиля). Так как в условиях
установившегося движения численные
значения динамического фактора и
суммарного коэффициента дорожного
сопротивления равны, т.е. ψ
= D.
Зная динамический
фактор автомобиля, можно определить,
какое дорожное сопротивление он будет
преодолевать.

Динамический
фактор есть отношение избыточной силы
тяги, к полному весу автомобиля:

3.1

Так как касательная
сила тяги Рк
и сила сопротивления воздуха Рw
изменяются с
изменением скоростного и нагрузочного
режимов работы
автомобиля, то и
динамический фактор в условиях
эксплуатации не остается постоянным.
Его оценивают с помощью динамической
характеристики, которая представляет
собой D
= ƒ(V).

Основой для
построения динамической характеристики
(рис. 2) является внешняя скоростная
характеристика карбюраторного двигателя
или регуляторная характеристика дизеля,
а также данные тягового расчета и ряд
параметров автомобиля-прототипа

а) Построение
динамической характеристики автомобиля.
Наметим не менее пяти точек скоростных
режимов автомобиля на каждой передаче.
Скорости движения автомобиля при
движении на различных передачах и при
различных значениях частот вращения
вала двигателя определяют по формуле

3.2

1-ая передача

2-ая передача

3-ья передача

4-ая передача

5-ая передача

4,007

10,19

25,95

66,038

168,05

9,016

22,94

58,38

148,58

378,11

16,028

40,79

103,801

264,15

672,20

19,647

49,99

127,236

323,79

823,96

25,33

64,46

164,048

417,47

1062,35

б) Для этих
скоростных режимов находим значения
крутящих моментов двигателя и определяют
касательные силы тяги на каждой передаче
по формуле:

Значение Мк

1-ая передача

2-ая передача

3-ья передача

4-ая передача

5-ая передача

263,7

28046,73

17581,6

11021,3

6908,9

4330,93

259,3

27585,15

17292,2

10839,9

6795,2

4259,66

234,7

24969,51

15652,5

9812,05

6150,8

3855,75

218

23189,11

14536,5

9112,42

5712,3

3580,83

188,3

20031,87

12557,3

7871,75

4934,5

3093,29

3.3

Для определения
силы сопротивления воздуха используют
зависимость.

значение n

1-ая передача

2-ая передача

3-ая передача

4-ая передача

5-ая передача

1400

1,257

2,005

3,199

5,103

8,14

2100

1,885

3,007

4,798

7,654

12,21

2800

2,514

4,01

6,398

10,205

16,28

3100

2,783

4,44

7,083

11,299

18,025

3520

3,16

5,04

8,043

12,829

20,467

Значения коэффициента
сопротивления воздуха kw
и площади поперечного сечения автомобиля
Fа
принимают из тягового расчета.

в) Значения
динамического фактора для каждой
передачи подсчитывают

по формуле:

Используя
полученные значения динамического
фактора, строят характеристику D
= ƒ(V).

1-ая передача

2-ая передача

3-я передача

4-ая передача

5-ая передача

0,3862

0,242

0,1514

0,0943

0,0573

0,3798

0,237

0,1485

0,0916

0,0534

0,344

0,215

0,1337

0,0811

0,0438

0,3191

0,1995

0,1237

0,0742

0,0379

0,2755

0,172

0,1062

0,0622

0,0279

Рис. 2. Динамическая
характеристика автомобиля

Библиографический
список

  1. Чудаков Е.Д. Теория
    автомобиля. М.: Машгиз, 1940.

  2. Скотников В.А.,
    Мащенский А.Н., Солонский А.С. Основы
    теории и расчета трактора и автомобиля.
    М.: Агропромиздат, 1986.

  3. Колчин А.И., Демидов
    В.П. Расчет автомобильных и тракторных
    двигателей. М.: Высшая школа, 1980.

  4. Чернышев В.А.
    Тягово-динамический расчет автомобиля:
    Учебное пособие. М: МГАУ им. В.П. Горячкина,
    1994.

  5. Чернышев В.А.
    Тяговый расчет трактора: Методические
    рекомендации. М.:-ГОСНИТИ, 1982.

17

Определение передаточного числа главной передачи.

Передаточ­ное число главной передачи находят исходя из максимальной ско­рости автомобиля на высшей передаче, заданной техническими условиями на проектируемый автомобиль.

Значение передаточного числа главной передачи определяют по формуле

Ur=3,6(wmaxrk)/VmaxUkUд

где vmax — максимальная скорость автомобиля, км/ч; wmах — мак­симальная угловая скорость коленчатого вала, рад/с; rk — радиус колеса, м; Uk — передаточное число коробки передач на высшей передаче; ид — передаточное число дополнительной коробки пе­редач на высшей передаче (ид = 1).

Полагают, что передаточные числа коробки передач на выс­шей передаче имеют следующие значения: ик= 1,0 — для прямой передачи и ик = 0,9…1,0 — для повышающей передачи легковых автомобилей; ик — 1,0 — для грузовых автомобилей с числом пере­дач не более шести; ик = 0,7…0,8 — для многоступенчатых коро­бок передач грузовых автомобилей.

Найденное расчетным путем передаточное число главной пе­редачи UТ должно иметь следующие значения: не более 5,0 — у легковых автомобилей; не более 7,0 — у грузовых автомобилей грузоподъемностью до 8 т; не более 8,0 — у грузовых автомобилей грузоподъемностью свыше 8 т.

Расчетное значение передаточного числа главной передачи не­обходимо сравнить с существующими передаточными числами главных передач автомобилей аналогичного типа и назначения. В том случае, если у новой модели автомобиля проектируется ве­дущий мост, то это значение передаточного числа уточняют с учетом числа зубьев шестерен главной передачи.

Определение передаточного числа первой передачи коробки передач. Определение передаточных чисел промежуточных ступеней коробки передач.

При опре­делении передаточных чисел коробки передач нужно помнить о том, что I передача предназначена для преодоления максималь­ного сопротивления дороги. Промежуточные передачи коробки пе­редач используются при разгоне автомобиля, преодолении повы­шенного сопротивления движению, работе автомобиля в услови­ях, не позволяющих двигаться с высокой скоростью (гололед, выбитая дорога, задержка впереди идущим транспортом и т.д.), а также при торможении двигателем на затяжных пологих спусках.

При расчете передаточных чисел сначала находят передаточ­ное число I передачи по заданному техническими условиями мак­симальному коэффициенту сопротивления дороги ψmах или мак­симальному динамическому фактору автомобиля по тяге Dmax на I передаче.

Это передаточное число определяют с помощью выражения, полученного из формулы для динамического фактора, пренебре­гая силой сопротивления воздуха, так как она незначительна при небольших скоростях движения:

u1=(Gaψmaxrk)/Mmaxηтрuгuд

где Ga — вес автомобиля с полной нагрузкой, Н; Mmax — макси­мальный крутящий момент двигателя, Н • м.

Полученное передаточное число I передачи коробки передач не гарантирует отсутствия буксования ведущих колес автомобиля. Чтобы не было буксования ведущих колес при движении на I пере­даче, необходимо выполнение следующего неравенства:

(Mmaxηтрuгuдu1)/ Gark≤Dсц=(mp2Ga2φx)/Ga

где Dсц — динамический фактор автомобиля по сцеплению; тР2 -= 1,20…1,35 — коэффициент изменения реакций на задних веду­щих колесах; Ga2 —- вес, приходящийся на задние колеса автомо­биля с полной нагрузкой, Н; фх= 0,6…0,8 — коэффициент сцеп­ления колес с дорогой.

Из этого соотношения определяют новое передаточное число I передачи, при котором буксования ведущих колес не будет:

u1=(mp2Ga2φxrk)/ Mmaxηтрuгuд

После проверки передаточного числа I передачи на отсутствие буксования ведущих колес автомобиля из двух найденных переда­точных чисел I передачи коробки передач для дальнейших расче­тов выбирают меньшее.

По этому значению передаточного числа I передачи и извест­ному значению передаточного числа высшей передачи определя­ют передаточные числа промежуточных передач.

Если высшая передача прямая (ип = 1), то для расчёта переда­точных чисел промежуточных передач используют следующее выражение:

Uk=

где п’ — число передач, не считая повышающую передачу и пере­дачу заднего хода; к — номер передачи.

Если высшая передача повышающая (ик < 1), то значение ее передаточного числа выбирают в соответствии с типом автомоби­ля, а остальные передаточные числа промежуточных передач рас­считывают с помощью приведенного выше выражения.

Передаточное число передачи заднего хода

Uзк=(1.2…..1,3)u1

Окончательное значение передаточного числа передачи задне­го хода определяют при компоновке коробки передач.

Рассчитанные передаточные числа коробки передач являются ориентировочными и при проектировании новой коробки пере­дач могут незначительно изменяться.

Определения

Эти термины важно запомнить. Ведущая ветвь ремня — набегает на ведущий шкив

При работе передачи растягивается

Ведущая ветвь ремня — набегает на ведущий шкив. При работе передачи растягивается.

Ведомая ветвь ремня — сходит с ведущего ремня и набегает на ведомый. При работе передачи расслабляется.

Межосевое (межцентровое) расстояние – кратчайшее расстояние между осями шкивов.

Натяжной ролик (леникс, от нем. lenix, lenixrolle — натяжной ролик) – элемент ремённой или цепной передачи; свободно вращающееся на оси колесо (шкив, звездочка, ролик), которое используется для регулирования натяжения ремня или цепи. Например, используется в тракторах для натяжения гусениц или в двигателе автомобиля для натяжения ремня ГРМ (газораспределительного механизма).

Пассик (от польского pasek — ремешок) – исторически вошедшее в наш оборот название приводного ремня круглого сечения. Слово «пассик» имеет польское происхождение. Его появление в русском словаре связывают с 80-ми годах 20-го века, когда им называли соответствующий элемент в импортном польском магнитофоне. Пассик, как правило, выполнен из резины или других полимерных материалов. Пассики использовались в устройстве протяжного механизма магнитной ленты старого кассетного магнитофона – он хорошо сглаживал рывки от электромотора и предохранял от искажений звука. «Пассики» входят в комплект конструктора Lego WeDo или ресурсного набора Lego MINDSTORMS Education EV3. В общем, всякий пассик — приводной ремень, но не каждый приводной ремень – пассик.

Приводной ремень – гибкий замкнутый элемент (ремень) для передачи вращения между двумя шкивами. Вращение передается за счет силы трения (гладкий ремень) или силы зацепления (ремень с зубчиками). Может иметь разную форму: бывают плоские ремни, зубчатые ремни, клиновидные ремни.

Ремённая передача (англ. belt drive)– механизм, предназначенный для передачи вращательного движения с помощью силы трения или зубчатого зацепления замкнутой гибкой связи (ремня) с помощью колес (шкивов), закрепленных на входном и выходном вале.

Угол обхвата – угол прилегания ремня к шкиву.

Шкив – фрикционное (англ. friction — трение) колесо с ободом или канавкой по окружности. Передает или принимает движение от приводного ремня. В отличие от блока, который имеет похожую форму, шкив всегда передавет усилие с оси на ремень, либо принимает усилие с ремня на ось. Блок же всегда свободно вращается на оси и обеспечивает изменение направления движения каната/троса, а также изменяет прикладываемую силу.

Назначение и устройство МКПП

МКП на данный момент не самые распространенные, хотя тоже широко используются благодаря надежности, простоте конструкции, ремонтопригодности. Скорость выбирает и переключает водитель вручную. Главное назначение МКПП — преобразование крутящего момента и его передача от мотора на колеса, изменяя передаточное число.

Устройство МКПП:

  1. корпус, он же картер;
  2. два, три или больше валов: ведущий, ведомый (может быть два или больше), промежуточный (если модель с тремя валами);
  3. шестерни валов;
  4. рычаг переключения скоростей;
  5. синхронизатор (2 блокировочных кольца, муфта, сухари),
  6. проволочные кольца;
  7. подшипники, сальники.

По количеству валов МКП делятся на:

  • двухвальные;
  • трехвальные.

По количеству ступеней бывают

  • 4-ступенчатые;
  • 5;
  • 6.

Неотъемлемая часть МКП сцепление, отсоединяющая коробку от мотора, не повреждая в процессе переключения агрегаты. Говоря упрощенно, сцепление выключает крутящий момент, переключая двигатель и колеса на холостую работу.

Двухвальная коробка передач: устройство и принцип работы

МКПП с двумя валами устанавливаются в легковые авто с передним приводом. Какое-то количество шестеренок вращаются, остальные закреплены, шестерни ведущего и ведомого валов зацеплены. На каждый вал обязательно установлен хотя бы один синхронизатор.

Принципиальная схема устройства двухвальной коробки передач

Для чайников принцип работы можно объяснить как соединение шестерен с разным количеством зубьев, чтобы приспособить работу двигателя (обороты) к постоянно меняющейся скорости автомобиля при разгоне или торможении.

Первичный вал через маховик соединен с коленвалом двигателя, передаточные числа передаются с него на вторичный, потом на передние колеса через главную передачу и дифференциал. Благодаря отсутствию промежуточного вала у такой КПП небольшие размеры.

Для соединения шестерен используются муфты синхронизаторов. При необходимости увеличить количество ступеней в КП устанавливают 2 или 3 вторичных вала.

Переключающий скорости механизм располагается отдельно от трансмиссии, связывается с ней тягами или тросиками.

Устройство механизма для переключения скоростей:

  • рычаг выбора передачи, оснащенный тросом для ее включения;
  • шток, оснащенный вилками;
  • рукоятка для переключения скорости;
  • блокирующий замок.

Как рассчитать передаточное число

Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.

Расчет без учета сопротивления

В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.

u12 = ± Z2/Zи u21 = ± Z1/Z2,

Где u12 – передаточное число шестерни и колеса;

Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.

Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».

При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.

Обычно положительным считается направление движения по часовой стрелке. Знак играет большую роль при расчетах многоступенчатых редукторов. Определяется передаточное число каждой передачи отдельно по порядку расположения их в кинематической цепи. Знак сразу показывает направление вращения выходного вала и рабочего узла, без дополнительного составления схем.

Вычисление передаточного числа редуктора с несколькими зацеплениями – многоступенчатого, определяется как произведение передаточных чисел и вычисляется по формуле:

u16 = u12×u23×u45×u56 = z2/z1×z3/z2×z5/z4×z6/z5 = z3/z1×z6/z4

Зубчатое зацепление жесткое. Детали не могут проскальзывать относительно друг друга, как в ременной передаче и менять соотношение количества вращений. Поэтому на выходе обороты не изменяются, не зависят от перегруза. Верным получается расчет скорости угловой и количества оборотов.

КПД зубчатой передачи

Для реального расчета передаточного отношения, следует учитывать дополнительные факторы. Формула действительна для угловой скорости, что касается момента силы и мощности, то они в реальном редукторе значительно меньше. Их величину уменьшает сопротивление передаточных моментов:

  • трение соприкасаемых поверхностей;
  • изгиб и скручивание деталей под воздействием силы и сопротивление деформации;
  • потери на шпонках и шлицах;
  • трение в подшипниках.

Для каждого вида соединения, подшипника и узла имеются свои корректирующие коэффициенты. Они включаются в формулу. Конструктора не делают расчеты по изгибу каждой шпонки и подшипника. В справочнике имеются все необходимые коэффициенты. При необходимости их можно рассчитать. Формулы простотой не отличаются. В них используются элементы высшей математики. В основе расчетов способность и свойства хромоникелевых сталей, их пластичность, сопротивление на растяжение, изгиб, излом и другие параметры, включая размеры детали.

Что касается подшипников, то в техническом справочнике, по которому их выбирают, указаны все данные для расчета их рабочего состояния.

При расчете мощности, основным из показателей зубчатых зацепления является пятно контакта, оно указывается в процентах и его размер имеет большое значение. Идеальную форму и касание по всей эвольвенте могут иметь только нарисованные зубья. На практике они изготавливаются с погрешностью в несколько сотых долей мм. Во время работы  узла под нагрузкой на эвольвенте появляются пятна в местах воздействия деталей друг на друга. Чем больше площадь на поверхности зуба они занимают, тем лучше передается усилие при вращении.

Все коэффициенты объединяются вместе, и в результате получается значение КПД редуктора. Коэффициент полезного действия выражается в процентах. Он определяется соотношением мощности на входном и выходном валах. Чем больше зацеплений, соединений и подшипников, тем меньше КПД.

Коэффициент крутящего момента

Зубчатой передачи могут быть проанализированы с использованием принципа виртуальной работы , чтобы показать , что его крутящий момент коэффициент, который представляет собой отношение его выходного крутящего момента к его входной крутящий момент равен передаточного отношения, или отношение скорости, зубчатой передачи.

Это означает, что входной крутящий момент Τ A, приложенный к входной шестерне G A, и выходной крутящий момент Τ B на выходной шестерне G B связаны соотношением

рзнак равноТBТА,{\ displaystyle R = {\ frac {T_ {B}} {T_ {A}}},}

где R — передаточное число зубчатой ​​передачи.

Коэффициент крутящего момента зубчатой ​​передачи также известен как ее механическое преимущество.

MАзнак равноТBТА.{\ displaystyle {\ mathit {MA}} = {\ frac {T_ {B}} {T_ {A}}}.}
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector